作者
Omowumi Titilola Kayode,Damilare Rotimi,Elizabeth Onyi Okoh,Matthew Iyobhebhe,A.A.A. Kayode,Oluwafemi Adeleke Ojo
摘要
This study investigates the antidiabetic effect of a ketogenic diet (KD) on sucrose-induced insulin resistance in the fruit fly model. The fruit flies were divided and grouped into four: Group A, B, C, and D, representing the control, high-sucrose diet (HSD), KD, and HSD + KD, respectively. The administration of the various treatments to the groups proceeded for 7 days. The flies were thereafter immobilized, homogenized, and the homogenates used for biochemical parameters determination. This includes glucose concentration, antioxidant status, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, total cholesterol (TC), triglycerides (TG), and protein concentration. There was a significant increase (p < .05) in weight gain, glucose concentration, TG, HMG-CoA reductase activity, TC, and lipid peroxidation status of the HSD group compared with the control and KD groups. The antioxidant enzymes measured (superoxide dismutase, catalase, and reduced glutathione) and protein concentrations were repressed significantly (p < .05) in the HD groups but significantly elevated (p < .05) in the KD, HSD + KD, and the control groups. The KD improved biochemical parameters altered during the onset of sucrose-induced insulin resistance. With further research on this, KD may emerge as the much-awaited treatment option for diabetes mellitus type 2 (T2DM) with almost reduced toxicity concerns. PRACTICAL APPLICATIONS: Novel KD are sources of dietary phytocompounds with proven antioxidant activities. The antidiabetic activity of the KD was investigated. The results showed that the KD proves to serve as a better effective antidiabetic option in Drosophila melanogaster. The observed results could provide the potential application of the KD as an alternative therapy for diabetes management.