Intelligent Teaching Evaluation System Integrating Facial Expression and Behavior Recognition in Teaching Video

计算机科学 构造(python库) 卷积神经网络 面部表情 深度学习 积极倾听 人工智能 领域(数学) 表达式(计算机科学) 面部识别系统 面子(社会学概念) 机器学习 模式识别(心理学) 心理学 社会学 沟通 社会科学 程序设计语言 纯数学 数学
作者
Zheng Chen,Meiyu Liang,Wanying Yu,Yongkang Huang,Xiaoxiao Wang
标识
DOI:10.1109/bigcomp51126.2021.00019
摘要

The student's listening status in the classroom is an important indicator to evaluate that if he takes an active participation in the classroom and study seriously. However, the main challenge in the teaching evaluation is that the teacher in class cannot timely, objectively and accurately evaluate each student's state of listening in accordance with the facial expression or behavior of the students. Along with the advance of deep learning algorithms, artificial intelligence technology is more and more widely applied in the field of education. Based on the above challenges, this paper proposes an intelligent teaching evaluation method that integrates student facial expressions and behaviors in teaching videos, designs and implements a deep learning based intelligent teaching evaluation system. We construct the face detection and recognition model based on deep convolutional neural network and triple loss function to realize the detection and recognition of face regions of students. And then the student facial expression recognition model and the student behavior recognition model based on the deep separable convolutional neural network are constructed. Finally, we propose a novel comprehensive teaching evaluation algorithm by fusion of the student facial expression and behavior, aiming at calculating the comprehensive evaluation value and obtain the corresponding evaluation level. Also, we construct the first teaching video database, student facial expression database and student behavior database for intelligent teaching evaluation. In this paper, the evaluation of students fully combines the students' specific facial expressions under certain behaviors in the classroom. Therefore, the final teaching assessment results are more comprehensive and accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wos完成签到 ,获得积分10
1秒前
nicai发布了新的文献求助10
1秒前
dll发布了新的文献求助10
1秒前
春景当思发布了新的文献求助10
2秒前
明亮若枫发布了新的文献求助20
3秒前
4秒前
4秒前
Nayvue完成签到,获得积分10
4秒前
genomed完成签到,获得积分0
5秒前
HH发布了新的文献求助10
5秒前
魔幻的访烟应助yr采纳,获得10
7秒前
小二郎应助高高的沂采纳,获得30
7秒前
无语的襄完成签到,获得积分10
7秒前
科研通AI5应助kerio采纳,获得10
8秒前
8秒前
田様应助shinhung采纳,获得10
8秒前
陈晚拧发布了新的文献求助10
9秒前
科研通AI5应助小狗熊吖i采纳,获得10
9秒前
坚定的铃铛应助科研小白采纳,获得10
9秒前
10秒前
11秒前
11秒前
lllllll完成签到,获得积分10
11秒前
瘦瘦凌丝完成签到 ,获得积分10
11秒前
英俊的铭应助医者学也采纳,获得10
14秒前
14秒前
充电宝应助破晓之照采纳,获得10
14秒前
14秒前
16秒前
yc发布了新的文献求助100
16秒前
浅浅发布了新的文献求助10
16秒前
17秒前
17秒前
可爱的函函应助顾化蛹采纳,获得10
17秒前
18秒前
18秒前
SYanan发布了新的文献求助10
18秒前
空空完成签到,获得积分20
20秒前
弗一昂完成签到,获得积分10
20秒前
魔幻的访烟应助尔尔采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561407
求助须知:如何正确求助?哪些是违规求助? 3135053
关于积分的说明 9410808
捐赠科研通 2835483
什么是DOI,文献DOI怎么找? 1558462
邀请新用户注册赠送积分活动 728229
科研通“疑难数据库(出版商)”最低求助积分说明 716729