Exploring Prognostic Signatures of Hepatocellular Carcinoma and the potential implications in Tumor Immune Microenvironment

Lasso(编程语言) 比例危险模型 接收机工作特性 肝细胞癌 基因 生存分析 癌症研究 相关性 生物 回归分析 免疫系统 医学 计算生物学 内科学 肿瘤科 免疫学 统计 遗传学 计算机科学 数学 几何学 万维网
作者
Hongxu Chen,Zhijing Jiang,Bingshi Yang,Guiling Yan,Xiaochen Wang,Shuning Zang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:24 被引量:2
标识
DOI:10.2174/1386207324666210309100923
摘要

The objective of this study is to construct a prognostic model using genetic markers of liver cancer and explore the signature genes associated with the tumor immune microenvironment.Cox proportional hazards regression analysis was carried out to screen the significant HR using the dataset of TCGA Liver Cancer (LIHC) gene expression data. Then LASSO (least absolute shrinkage and selection operator) was performed to select the minimal variables with significant HR of genes. Thus, the prognostic model was constructed by the minimal variables with their HR. Time-dependent receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) value was used to assess the prognostic performance. Then the patients were divided into high and low-risk groups by the median of the model. Survival analysis was performed on the two groups with testing and an independent dataset. Furthermore, enrichment analysis of signature mRNAs and lncRNAs and their co-expression genes was performed. Then, Spearman rank correlation was used to calculate the correlation between immune cells and genes in the prognostic model, and abundance difference of the immune cells in high and low risks groups was tested.A total of 5989 genes with significant HR were identified. 6 key genes (three mRNAs: DHX37, SMIM7, and MFSD1, three lncRNAs: PIWIL4, KCNE5, and LOC100128398) screened by LASSO were used to construct the model with their HR value respectively. The AUC values of 1 and 5-year overall survival were 0.78 and 0.76 in discovery data and 0.67 and 0.68 in testing data. Survival analysis performed significantly discriminated high and low groups with testing and independent data. Furthermore, many immune cells such as nTreg found a significant correlation with the genes in the prognostic model, and many immune cells showed significantly different abundance in high and low-risk groups.In the study, we used Univariate Cox analyses and LASSO algorithm with TCGA gene expression data to construct the prognostic model in liver cancer patients. The prognostic model comprised of three mRNAs, including DHX37, SMIM7, MFSD1, and three lncRNAs, including PIWIL4, KCNE5, and LOC100128398. Furthermore, these gene expression levels were associated with the abundance of some immune cells, such as nTreg. Also, many immune cells have significantly different abundance in high and low-risk groups. All these results indicated that the combination with all these six genes could be the potential biomarker for the prognosis of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助max采纳,获得10
刚刚
科研通AI2S应助peng采纳,获得10
刚刚
clamon完成签到,获得积分10
2秒前
初一发布了新的文献求助10
3秒前
4秒前
5秒前
愉快树叶完成签到,获得积分10
5秒前
5秒前
慕青应助武雨寒采纳,获得10
6秒前
媛LZ发布了新的文献求助10
7秒前
机灵旭尧发布了新的文献求助10
8秒前
狂野的小露喳完成签到,获得积分10
8秒前
故里发布了新的文献求助20
9秒前
9秒前
baiabi发布了新的文献求助10
10秒前
10秒前
10秒前
今后应助青雪采纳,获得10
11秒前
11秒前
14秒前
14秒前
15秒前
稳重向南发布了新的文献求助10
15秒前
李志平完成签到 ,获得积分10
15秒前
清新的毛豆完成签到,获得积分10
16秒前
大个应助123123采纳,获得20
16秒前
16秒前
18秒前
JXXX发布了新的文献求助10
18秒前
20秒前
神龙大冲冠军完成签到,获得积分20
20秒前
苦雨完成签到,获得积分10
21秒前
楠楠发布了新的文献求助10
22秒前
1113完成签到,获得积分10
24秒前
huhu完成签到 ,获得积分10
25秒前
25秒前
1113发布了新的文献求助10
27秒前
马62发布了新的文献求助80
28秒前
米酒完成签到,获得积分10
28秒前
活力的青文完成签到,获得积分10
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463119
求助须知:如何正确求助?哪些是违规求助? 3056538
关于积分的说明 9052742
捐赠科研通 2746421
什么是DOI,文献DOI怎么找? 1506925
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695791