共聚物
计算机科学
聚合物
可扩展性
深度学习
信息学
材料信息学
任务(项目管理)
单体
集合(抽象数据类型)
人工神经网络
材料科学
人工智能
纳米技术
健康信息学
系统工程
数据库
工程类
工程信息学
护理部
复合材料
公共卫生
程序设计语言
医学
电气工程
作者
Christopher Kuenneth,William Schertzer,Rampi Ramprasad
出处
期刊:Macromolecules
[American Chemical Society]
日期:2021-06-29
卷期号:54 (13): 5957-5961
被引量:62
标识
DOI:10.1021/acs.macromol.1c00728
摘要
Polymer informatics tools have been recently gaining ground to efficiently and effectively develop, design, and discover new polymers that meet specific application needs. So far, however, these data-driven efforts have largely focused on homopolymers. Here, we address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers. Advanced polymer fingerprinting and deep-learning schemes that incorporate multitask learning and meta learning are proposed. A large data set containing over 18 000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used to demonstrate the copolymer prediction efficacy. The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
科研通智能强力驱动
Strongly Powered by AbleSci AI