物理
Thirring型号
兰姆达
产品(数学)
数学物理
维数(图论)
操作员(生物学)
联轴节(管道)
粒子物理学
费米子
量子力学
组合数学
数学
机械工程
生物化学
化学
几何学
抑制因子
转录因子
工程类
基因
出处
期刊:Physical review
日期:1970-10-15
卷期号:2 (8): 1473-1477
被引量:154
标识
DOI:10.1103/physrevd.2.1473
摘要
An example of an operator-product expansion is worked out for the Thirring model. The Thirring model involves a two-dimensional zero-mass Dirac field $\ensuremath{\psi}$ interacting via the Fermi interaction. The model is scale invariant but the dimensions of local fields in the model vary with the coupling constant $\ensuremath{\lambda}$. It is shown that $\ensuremath{\psi}$ has dimension $\frac{1}{2}+(\frac{{\ensuremath{\lambda}}^{2}}{4{\ensuremath{\pi}}^{2}}){(1\ensuremath{-}\frac{{\ensuremath{\lambda}}^{2}}{4{\ensuremath{\pi}}^{2}})}^{\ensuremath{-}1}$, while the composite fields $\overline{\ensuremath{\psi}}\ensuremath{\psi}$ and $\ensuremath{\psi}{\ensuremath{\gamma}}_{5}\ensuremath{\psi}$, appropriately defined, have the dimension $(1\ensuremath{-}\frac{\ensuremath{\lambda}}{2\ensuremath{\pi}}){(1+\frac{\ensuremath{\lambda}}{2\ensuremath{\pi}})}^{\ensuremath{-}1}$.
科研通智能强力驱动
Strongly Powered by AbleSci AI