Improved performance on high-dimensional survival data by application of Survival-SVM

计算机科学 支持向量机 统计的 背景(考古学) 数据挖掘 参数统计 特征(语言学) 经验似然 机器学习 人工智能 统计 数学 推论 哲学 古生物学 生物 语言学
作者
Vanya Van Belle,Kristiaan Pelckmans,Sabine Van Huffel,Johan A. K. Suykens
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:27 (1): 87-94 被引量:54
标识
DOI:10.1093/bioinformatics/btq617
摘要

Abstract Motivation: New application areas of survival analysis as for example based on micro-array expression data call for novel tools able to handle high-dimensional data. While classical (semi-) parametric techniques as based on likelihood or partial likelihood functions are omnipresent in clinical studies, they are often inadequate for modelling in case when there are less observations than features in the data. Support vector machines (svms) and extensions are in general found particularly useful for such cases, both conceptually (non-parametric approach), computationally (boiling down to a convex program which can be solved efficiently), theoretically (for its intrinsic relation with learning theory) as well as empirically. This article discusses such an extension of svms which is tuned towards survival data. A particularly useful feature is that this method can incorporate such additional structure as additive models, positivity constraints of the parameters or regression constraints. Results: Besides discussion of the proposed methods, an empirical case study is conducted on both clinical as well as micro-array gene expression data in the context of cancer studies. Results are expressed based on the logrank statistic, concordance index and the hazard ratio. The reported performances indicate that the present method yields better models for high-dimensional data, while it gives results which are comparable to what classical techniques based on a proportional hazard model give for clinical data. Contact: vanya.vanbelle@esat.kuleuven.be Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夕赣发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
李浩然发布了新的文献求助10
4秒前
搜集达人应助健忘的金采纳,获得10
4秒前
5秒前
AIR关注了科研通微信公众号
5秒前
小二郎应助小怪兽采纳,获得10
5秒前
吴海强发布了新的文献求助10
7秒前
Dou完成签到,获得积分10
8秒前
枯叶蝶完成签到,获得积分10
8秒前
l2385865294发布了新的文献求助10
9秒前
暗香发布了新的文献求助20
9秒前
长安发布了新的文献求助10
10秒前
wanci应助厚朴采纳,获得30
10秒前
11秒前
11秒前
CR发布了新的文献求助10
11秒前
甜甜芾完成签到,获得积分10
13秒前
zz完成签到,获得积分10
14秒前
15秒前
所所应助Lze采纳,获得10
15秒前
13831555290关注了科研通微信公众号
15秒前
hjj完成签到,获得积分10
16秒前
灭亡发布了新的文献求助10
16秒前
余小鱼发布了新的文献求助10
17秒前
毛豆应助l2385865294采纳,获得10
17秒前
17秒前
18秒前
huan完成签到,获得积分10
19秒前
19秒前
20秒前
VDC应助zz采纳,获得30
20秒前
吴海强完成签到,获得积分10
21秒前
wanci应助那种采纳,获得10
22秒前
LANER发布了新的文献求助10
24秒前
皮皮猫发布了新的文献求助10
24秒前
24秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204