葡萄糖氧化酶
金刚烷
环糊精
生物传感器
碳纳米管
化学
聚吡咯
吡咯
纳米技术
二茂铁
聚合
材料科学
化学工程
电极
电化学
有机化学
聚合物
物理化学
工程类
作者
Michael Holzinger,Laurent Bouffier,Reynaldo Villalonga,Serge Cosnier
标识
DOI:10.1016/j.bios.2008.06.029
摘要
One challenging goal for the development of biosensors is the conception of three-dimensional biostructures on electrode surfaces. With the aim to develop 3D architectures based on single-walled carbon nanotubes (SWCNTs) frameworks a novel adamantane-pyrrole monomer was synthesized. After electrochemical polymerization at 0.95V in acetonitrile, the resulting polypyrrole film provided affinity interactions with beta-cyclodextrin. SWCNT coatings were thus functionalized with poly(adamantane-pyrrole) and applied to the anchoring of glucose oxidase (GOX), modified with beta-cyclodextrin. By using this affinity system adamantine-cyclodextrin, beta-cyclodextrin-modified gold nanoparticles were attached onto the functionalized SWCNT deposit as intermediate layer. This allows the immobilization of adamantane-tagged GOX. The responses of these biosensors to glucose were measured by potentiostating the modified electrodes at 0.7V versus saturated calomel electrode (SCE) in order to oxidize the enzymatically generated hydrogen peroxide in the presence of glucose and oxygen. The highest sensitivity and maximum current density were recorded for the configuration based on beta-cyclodextrin-modified gold particles as intermediate layer between adamantine-functionalized SWCNTs and GOX (31.02 mAM(-1)cm(-2) and 350 microAcm(-2), respectively). The similar configuration without SWCNTs exhibits a sensitivity and J(max) of 0.98 mAM(-1)cm(-2) and 75 microAcm(-2), respectively. The resulting supramolecular assemblies were characterized by scanning electron microscopy (SEM). Advantages and disadvantages of the different preparation methods and the performance of each affinity sensor setup are discussed in detail.
科研通智能强力驱动
Strongly Powered by AbleSci AI