Development of a Nomogram for Prediction of Vaginal Birth After Cesarean Delivery

列线图 医学 逻辑回归 独生子女 产科 剖宫产 阴道分娩 阴道分娩 妊娠期 怀孕 遗传学 生物 内科学
作者
William A. Grobman,Yinglei Lai,Mark B. Landon,Catherine Y. Spong,Kenneth J. Leveno,Dwight J. Rouse,Michael W. Varner,Atef H. Moawad,Steve N. Caritis,Margaret Harper,Ronald J. Wapner,Yoram Sorokin,Menachem Miodovnik,Marshall Carpenter,Mary J. OʼSullivan,Baha M. Sibai,Oded Langer,John M. Thorp,Susan M. Ramin,Brian M. Mercer
出处
期刊:Obstetrics & Gynecology [Ovid Technologies (Wolters Kluwer)]
卷期号:109 (4): 806-812 被引量:450
标识
DOI:10.1097/01.aog.0000259312.36053.02
摘要

In Brief OBJECTIVE: To develop a model based on factors available at the first prenatal visit that predicts chance of successful vaginal birth after cesarean delivery (VBAC) for individual patients who undergo a trial of labor. METHODS: All women with one prior low transverse cesarean who underwent a trial of labor at term with a vertex singleton gestation were identified from a concurrently collected database of deliveries at 19 academic centers during a 4-year period. Using factors identifiable at the first prenatal visit, we analyzed different classification techniques in an effort to develop a meaningful prediction model for VBAC success. After development and cross-validation, this model was represented by a graphic nomogram. RESULTS: Seven-thousand six hundred sixty women were available for analysis. The prediction model is based on a multivariable logistic regression, including the variables of maternal age, body mass index, ethnicity, prior vaginal delivery, the occurrence of a VBAC, and a potentially recurrent indication for the cesarean delivery. After analyzing the model with cross-validation techniques, it was found to be both accurate and discriminating. CONCLUSION: A predictive nomogram, which incorporates six variables easily ascertainable at the first prenatal visit, has been developed that allows the determination of a patient-specific chance for successful VBAC for those women who undertake trial of labor. LEVEL OF EVIDENCE: II Using six patient characteristics easily ascertainable at the first prenatal visit, we have developed a model for prediction of vaginal birth after cesarean for women who undergo a trial of labor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SandyH关注了科研通微信公众号
1秒前
1秒前
公西元柏发布了新的文献求助10
1秒前
碱性沉默发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
SciGPT应助猪猪采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
独特微笑完成签到,获得积分10
2秒前
2秒前
nuonuo完成签到,获得积分10
3秒前
⊙▽⊙完成签到,获得积分10
3秒前
4秒前
MHB发布了新的文献求助50
4秒前
汉堡包应助马保国123采纳,获得10
4秒前
落晨发布了新的文献求助10
4秒前
Hello应助郑开司09采纳,获得10
5秒前
Jiangnj完成签到,获得积分10
5秒前
昵称发布了新的文献求助10
6秒前
含糊发布了新的文献求助10
6秒前
搜集达人应助8564523采纳,获得10
6秒前
无限的隶发布了新的文献求助10
6秒前
不安豁发布了新的文献求助10
6秒前
www发布了新的文献求助10
7秒前
7秒前
Crystal完成签到,获得积分10
8秒前
Laus发布了新的文献求助10
8秒前
orixero应助碱性沉默采纳,获得10
8秒前
今后应助仙子狗尾巴花采纳,获得10
8秒前
tylerconan完成签到 ,获得积分10
9秒前
9秒前
英俊的铭应助隐形的易巧采纳,获得10
10秒前
独特微笑发布了新的文献求助10
10秒前
学海无涯完成签到,获得积分10
10秒前
科研小民工应助机智苗采纳,获得30
10秒前
楼梯口无头女孩完成签到,获得积分10
13秒前
13秒前
Grayball应助gg采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762