A GA-based feature selection and parameters optimizationfor support vector machines

支持向量机 计算机科学 特征选择 人工智能 遗传算法 模式识别(心理学) 核(代数) 特征(语言学) 数据挖掘 选择(遗传算法) 机器学习 超参数优化 数学 语言学 组合数学 哲学
作者
Cheng-Lung Huang,Chieh-Jen Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:31 (2): 231-240 被引量:1249
标识
DOI:10.1016/j.eswa.2005.09.024
摘要

Support Vector Machines, one of the new techniques for pattern classification, have been widely used in many application areas. The kernel parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts classification accuracy. The objective of this research is to simultaneously optimize the parameters and feature subset without degrading the SVM classification accuracy. We present a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem. We tried several real-world datasets using the proposed GA-based approach and the Grid algorithm, a traditional method of performing parameters searching. Compared with the Grid algorithm, our proposed GA-based approach significantly improves the classification accuracy and has fewer input features for support vector machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新定义发布了新的文献求助30
刚刚
结实老四发布了新的文献求助30
刚刚
故国神游发布了新的文献求助10
1秒前
1秒前
1秒前
ckj发布了新的文献求助30
1秒前
2秒前
2秒前
搜集达人应助ceey_123采纳,获得10
2秒前
科研通AI6.1应助机灵水卉采纳,获得10
3秒前
1212发布了新的文献求助10
3秒前
内向平萱完成签到,获得积分10
4秒前
sln完成签到,获得积分20
4秒前
Akim应助阳光纸飞机采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
LERROR发布了新的文献求助10
6秒前
7秒前
yw发布了新的文献求助10
7秒前
殇春秋发布了新的文献求助10
7秒前
ddd发布了新的文献求助10
8秒前
小西发布了新的文献求助10
8秒前
8秒前
丘比特应助jixia采纳,获得10
9秒前
何双完成签到,获得积分10
9秒前
WXK@945完成签到,获得积分10
9秒前
9秒前
10秒前
LingMg完成签到,获得积分10
10秒前
10秒前
11秒前
乐乐应助年轻羿采纳,获得10
11秒前
11秒前
不安尔丝完成签到,获得积分10
12秒前
Lucas应助月兮2013采纳,获得10
12秒前
ww完成签到,获得积分10
12秒前
liudy发布了新的文献求助10
12秒前
科研通AI6.1应助LERROR采纳,获得10
12秒前
13秒前
13秒前
阳光总在风雨后完成签到,获得积分0
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851