A Survey of Sparse Representation: Algorithms and Applications

稀疏逼近 计算机科学 算法 贪婪算法 规范(哲学) 代表(政治) 缩小 神经编码 人工智能 匹配追踪 理论计算机科学 压缩传感 政治学 政治 程序设计语言 法学
作者
Zheng Zhang,Yong Xu,Jian Yang,Xuelong Li,David Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:3: 490-530 被引量:852
标识
DOI:10.1109/access.2015.2430359
摘要

Sparse representation has attracted much attention from researchers in fields of signal processing, image processing, computer vision and pattern recognition. Sparse representation also has a good reputation in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. The main purpose of this article is to provide a comprehensive study and an updated review on sparse representation and to supply a guidance for researchers. The taxonomy of sparse representation methods can be studied from various viewpoints. For example, in terms of different norm minimizations used in sparsity constraints, the methods can be roughly categorized into five groups: sparse representation with $l_0$-norm minimization, sparse representation with $l_p$-norm (0$<$p$<$1) minimization, sparse representation with $l_1$-norm minimization and sparse representation with $l_{2,1}$-norm minimization. In this paper, a comprehensive overview of sparse representation is provided. The available sparse representation algorithms can also be empirically categorized into four groups: greedy strategy approximation, constrained optimization, proximity algorithm-based optimization, and homotopy algorithm-based sparse representation. The rationales of different algorithms in each category are analyzed and a wide range of sparse representation applications are summarized, which could sufficiently reveal the potential nature of the sparse representation theory. Specifically, an experimentally comparative study of these sparse representation algorithms was presented. The Matlab code used in this paper can be available at: http://www.yongxu.org/lunwen.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓梨发布了新的文献求助10
刚刚
刚刚
3秒前
4秒前
搞怪惜梦发布了新的文献求助10
5秒前
科研通AI2S应助如飘瑞雪采纳,获得10
5秒前
LienAo完成签到 ,获得积分10
7秒前
7秒前
酷波er应助搞怪惜梦采纳,获得10
9秒前
搜集达人应助畅快的易蓉采纳,获得10
10秒前
打打应助搞怪迎夏采纳,获得10
11秒前
11秒前
文艺谷蓝完成签到,获得积分10
11秒前
13秒前
中和皇极应助小孙采纳,获得10
13秒前
啊啊啊完成签到 ,获得积分10
14秒前
元半仙完成签到,获得积分10
15秒前
21秒前
jyp111完成签到,获得积分10
21秒前
21秒前
22秒前
FashionBoy应助水獭采纳,获得10
24秒前
奔波霸发布了新的文献求助10
24秒前
25秒前
27秒前
薛婧旌完成签到,获得积分10
28秒前
zxh123完成签到,获得积分10
29秒前
轻风完成签到 ,获得积分10
30秒前
30秒前
31秒前
孔大发布了新的文献求助10
33秒前
34秒前
36秒前
zxh123发布了新的文献求助10
36秒前
李浩发布了新的文献求助10
36秒前
briliian发布了新的文献求助10
36秒前
松山少林学武功完成签到 ,获得积分10
37秒前
ponny2001发布了新的文献求助10
37秒前
斯文败类应助奔波霸采纳,获得10
38秒前
40秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693