已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Measuring inconsistency in meta-analyses

计算机科学 情报检索 万维网 数据科学
作者
Julian P. T. Higgins,Simon G. Thompson,Jonathan J Deeks,Douglas G. Altman
出处
期刊:BMJ [BMJ]
卷期号:327 (7414): 557-560 被引量:56657
标识
DOI:10.1136/bmj.327.7414.557
摘要

Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱读文献完成签到,获得积分10
1秒前
xxttt发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
4秒前
6秒前
大牛牛完成签到,获得积分10
7秒前
香蕉觅云应助隐形的雪碧采纳,获得30
7秒前
善学以致用应助兰先生采纳,获得10
7秒前
jie完成签到 ,获得积分10
7秒前
8秒前
9秒前
CodeCraft应助云山采纳,获得10
9秒前
马先森发布了新的文献求助10
10秒前
10秒前
12秒前
Chen完成签到 ,获得积分10
13秒前
Owen应助李昕123采纳,获得10
13秒前
Ding发布了新的文献求助10
13秒前
15秒前
楼亦玉完成签到,获得积分10
17秒前
xu发布了新的文献求助10
17秒前
niuya发布了新的文献求助10
18秒前
崔大冠完成签到,获得积分10
18秒前
19秒前
20秒前
大模型应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得30
23秒前
浮浮世世发布了新的文献求助30
23秒前
浮游应助科研通管家采纳,获得10
24秒前
崔大冠发布了新的文献求助20
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI6应助迷路以筠采纳,获得10
24秒前
今后应助科研通管家采纳,获得30
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322726
求助须知:如何正确求助?哪些是违规求助? 4464117
关于积分的说明 13892377
捐赠科研通 4355535
什么是DOI,文献DOI怎么找? 2392378
邀请新用户注册赠送积分活动 1386013
关于科研通互助平台的介绍 1355810