Infiltration of Porous Alumina Bodies with Solution Precursors: Strengthening via Compositional Grading, Grain Size Control, and Transformation Toughening

材料科学 莫来石 复合材料 极限抗拉强度 多孔性 粒度 抗压强度 立方氧化锆 微观结构 相(物质) 抗弯强度 陶瓷 化学 有机化学
作者
Paul Honeyman‐Colvin,Fred F. Lange
出处
期刊:Journal of the American Ceramic Society [Wiley]
卷期号:79 (7): 1810-1814 被引量:29
标识
DOI:10.1111/j.1151-2916.1996.tb07999.x
摘要

Alumina powder compacts, partially densified with a lowtemperature heat treatment and then cut into bars, were infiltrated with liquid precursors that decomposed to either mullite (3Al 2 O 3 ·2SiO 2 ), fully stabilized zirconia (cubic Zr(8Y)O 2 ), or partially stabilized zirconia (tetragonal Zr(4Y)O 2 ). The specimens were repeatedly infiltrated and pyrolyzed to achieve a higher concentration of the precursor near the surface. The infiltrated bodies were then densified at 1500°C/2 h. Residual stresses developed during cooling from the densification temperature because of the higher concentration of the second phase near the surface and their differential thermal expansion relative to the matrix material. At least 10 bars of each two‐phase material were fractured in four‐point bending to determine the effect of the second phase on strength. The alumina bars without a second phase had a larger grain size (∼7 μm) and a mean strength of 253 MPa. The intruded phases significantly reduced the Al 2 O 3 grain size to ∼1 1μm. Despite their higher concentration near the surface and apparent surface tensile stress, both of the Zr(Y)O 2 phases increased the mean strength to 413 MPa ( c ‐Zr(8Y)O 2 ) and 582 MPa ( t ‐Zr(4Y)O 2 , an apparent toughening agent). The mullite second phase produced a high mean strength of 588 MPa, apparently due to its concentration gradient creating a compressive surface stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助xuli21315采纳,获得10
1秒前
bfr完成签到,获得积分10
1秒前
潼熙甄完成签到 ,获得积分10
1秒前
肖肖完成签到,获得积分10
1秒前
羊羊羊发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
兴奋的萨摩耶完成签到,获得积分20
4秒前
5秒前
Cenhuan发布了新的文献求助20
5秒前
檬沫熙完成签到,获得积分10
5秒前
研友_VZG7GZ应助小罗采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
叮当发布了新的文献求助10
6秒前
李琦发布了新的文献求助30
7秒前
8秒前
HL完成签到,获得积分10
8秒前
8秒前
L912294993发布了新的文献求助10
8秒前
暗眸发布了新的文献求助10
9秒前
NexusExplorer应助羊羊羊采纳,获得10
9秒前
风清扬发布了新的文献求助10
9秒前
11秒前
11秒前
流星砸地鼠完成签到 ,获得积分10
12秒前
12秒前
求助人员应助yeye采纳,获得60
13秒前
熊猫海发布了新的文献求助10
13秒前
13秒前
佩琪小姨发布了新的文献求助10
14秒前
15秒前
15秒前
叮当完成签到,获得积分10
16秒前
zxiaoo完成签到,获得积分10
17秒前
000发布了新的文献求助10
17秒前
6666发布了新的文献求助200
17秒前
芽衣完成签到 ,获得积分10
18秒前
是然完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057