In situ TEM electrochemistry of anode materials in lithium ion batteries

纳米线 材料科学 阳极 电解质 纳米线电池 透射电子显微镜 电化学 复合材料 纳米技术 化学工程 电极 化学 磷酸钒锂电池 工程类 物理化学
作者
Xiao Hua Liu,Jianyu Huang
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:4 (10): 3844-3844 被引量:441
标识
DOI:10.1039/c1ee01918j
摘要

We created the first nanobattery inside a transmission electron microscope (TEM), allowing for real time and atomic scale observations of battery charging and discharging processes. Two types of nanobattery cells, one based on room temperature ionic liquid electrolytes (ILEs) and the other based on all solid components, were created. The former consists of a single nanowire anode, an ILE and a bulk LiCoO2 cathode; the latter uses Li2O as a solid electrolyte and metal Li as the anode. Some of the important latest results obtained by using the nanobattery setup are summarized here: (1) upon charging SnO2 nanowires in an ILE cell with one end of the nanowire contacting the electrolyte, a reaction front propagates progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which continuously nucleate at the moving front and absorbed from behind. This dislocation cloud indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven solid-state amorphization. When the nanowire is immersed in the electrolyte (in a flooding geometry), a multiple-strip-multiple-reaction-front lithiation mechanism operates. (2) Upon charging <112>-oriented Si nanowires, the nanowires swell rather than elongate. We found unexpectedly the highly anisotropic volume expansion in lithiated Si nanowires, resulting in a surprising dumbbell-shaped cross-section, which developed due to plastic flow and necking instability. Driven by progressive charging, the stress concentration at the neck region led to cracking and eventually fracture of the single nanowire into sub-wires. Moreover, the fully lithiated phase was found to be crystalline Li15Si4, rather than the widely believed Li22Si5 phase, indicating the maximum capacity of Si being 3579 mA h g−1 at room temperature. (3) Carbon coating not only increases rate performance but also alters the lithiation induced strain of SnO2 nanowires. The SnO2 nanowires coated with carbon can be charged about 10 times faster than the non-coated ones. Intriguingly, the radial expansion of the coated nanowires was completely suppressed, resulting in enormously reduced tensile stress at the reaction front, as evidenced by the lack of formation of dislocations. (4) The lithiation process of individual Si nanoparticles was observed in real time in a TEM. A strong size dependent fracture behaviour was discovered, i.e., there exists a critical particle size with a diameter of ∼150 nm, below which the particles neither cracked nor fractured upon lithiation, above which the particles first formed cracks and then fractured due to lithiation induced huge volume expansion. For very large particles with size over 900 nm, electrochemical lithiation induced explosion of Si particles was observed. This strong size-dependent fracture behaviour is attributed to the competition between the stored mechanical energy and the crack propagation energy of the nanoparticles: smaller nanoparticles cannot store enough mechanical energy to drive crack propagation. These results indicate the strong material, size and crystallographic orientation dependent electrochemical behaviour of anode materials, highlighting the powerfulness of in situTEM electrochemistry, which provides not only deep understanding of the fundamental sciences of lithium ion batteries but also critical guidance in developing advanced lithium ion battery for electrical vehicle and backup power for fluctuation energy sources such as wind and solar energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vsoar完成签到,获得积分10
刚刚
1秒前
2秒前
GGGGGGGGGG发布了新的文献求助10
2秒前
2秒前
打打应助hhh采纳,获得10
3秒前
抓恐龙关注了科研通微信公众号
3秒前
碳点godfather完成签到,获得积分10
3秒前
ren完成签到,获得积分20
3秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
4秒前
TG_FY完成签到,获得积分10
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
JamesPei应助诗轩采纳,获得10
5秒前
TT完成签到,获得积分10
6秒前
reck发布了新的文献求助10
6秒前
7秒前
DK发布了新的文献求助10
7秒前
英俊的铭应助ren采纳,获得10
7秒前
圈圈发布了新的文献求助10
7秒前
乐乱完成签到 ,获得积分10
8秒前
415484112完成签到,获得积分10
9秒前
yinyi发布了新的文献求助10
9秒前
9秒前
赵一丁完成签到,获得积分10
10秒前
成就绮琴完成签到 ,获得积分10
10秒前
Chen完成签到,获得积分10
10秒前
huanfid完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
Stitch完成签到 ,获得积分10
11秒前
11秒前
眯眯眼的冷珍完成签到,获得积分10
11秒前
bjyx完成签到,获得积分10
11秒前
reck完成签到,获得积分10
12秒前
pharmstudent发布了新的文献求助30
12秒前
小田完成签到,获得积分10
12秒前
小喵发布了新的文献求助10
13秒前
FashionBoy应助毛毛哦啊采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672