亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Does nicotinic acid (niacin) lower blood pressure?

烟酸 医学 B族维生素 内科学 血脂异常 药理学 内分泌学 血压 肥胖
作者
Harold Bays,Daniel J. Rader
出处
期刊:International Journal of Clinical Practice [Wiley]
卷期号:63 (1): 151-159 被引量:31
标识
DOI:10.1111/j.1742-1241.2008.01934.x
摘要

International Journal of Clinical PracticeVolume 63, Issue 1 p. 151-159 Open Access Does nicotinic acid (niacin) lower blood pressure? H. E. Bays, H. E. Bays Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USASearch for more papers by this authorD. J. Rader, D. J. Rader Cardiovascular Metabolism Unit, Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USASearch for more papers by this author H. E. Bays, H. E. Bays Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USASearch for more papers by this authorD. J. Rader, D. J. Rader Cardiovascular Metabolism Unit, Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USASearch for more papers by this author First published: 15 December 2008 https://doi.org/10.1111/j.1742-1241.2008.01934.xCitations: 19 Harold E. Bays,Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Ave, Louisville, KY 40213, USATel.: + 1 502 515 5672Fax: + 1 502 214 3999Email: hbaysmd@aol.com Disclosures Dr Harold Bays has served as a Clinical Investigator for (and has received research grants from) pharmaceutical companies such as Abbott, Aegerion, Amylin, Alteon, Arena, AstraZeneca, Aventis, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Ciba Geigy, Daiichi Sankyo, Eli Lilly, Esperion, Fujisawa, GelTex, Genentech, GlaxoSmithKline, Hoechst Roussel, Hoffman LaRoche, InterMune, Ironwood Pharmaceuticals, Johnson & Johnson, Kos, Kowa, Kyorin, Lederle, Marion Merrell Dow, Merck and Co., Merck-Schering Plough, Metabolex, Miles, Microbia, Neuromed, Nicox, Novartis, Obecure, Orexigen, Parke Davis, Pfizer, Pliva, Purdue, Reliant, Roche, Rorer, Regeneron, Sandoz, Sanofi, Sciele, Searle, Shionogi, Schering-Plough, SmithKline Beecham, Takeda, TAP, Upjohn, Upsher Smith, Warner-Lambert and Wyeth-Ayerst. He has also served as a consultant, speaker, and/or advisor to and for pharmaceutical companies such as Abbott, Arena, AstraZeneca, Aventis, Bayer, Bristol-Myers Squibb, Daiichi Sankyo, DSM Nutritional Products, Inc., Essentialis Therapeutics, Ironwood Pharmaceuticals, KOS, Merck, Merck-Schering Plough, Metabasis Therapeutics, Microbia, Novartis, Nicox, Ortho-McNeil, Parke Davis, Pfizer, Reliant, Roche, Sandoz, sanofi-aventis, Schering-Plough, SmithKline Beecham, Surface Logix, Takeda, Upjohn and Warner-Lambert. Dr Rader has had financial relationships within the past 5 years with the following commercial interests: he has received grant or research support from Abbott, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Bruin Pharma, GlaxoSmithKline, Kos, Eli Lilly, Merck and Co., Pfizer, Schering-Plough and Takeda; served as a consultant to Abbott, AstraZeneca, Bristol-Myers Squibb, Dr Reddy’s Laboratories, GlaxoSmithKline, Johnson & Johnson, Kos, Merck and Co., Merck-Schering Plough, Novartis, Pfizer, Resverlogix, sanofi-aventis, Schering-Plough, Takeda and Wyeth; served on speakers bureaus and/or received honoraria from Abbott, AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Johnson & Johnson, Kos, Merck and Co., Merck-Schering Plough, Pfizer, sanofi-aventis, Schering-Plough, Takeda and Wyeth; and holds equity in Aegerion Pharmaceuticals. Mr. Gutkin assisted in manuscript preparation. He reports having consulted with or received grant support from Bristol-Myers Squibb, Eli Lilly, Merck-Schering Plough, MSP Singapore Co. LLC, Reliant and Schering-Plough, in addition to Merck & Co., within the past 5 years. Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Summary Nicotinic acid (niacin) is a well-established treatment for dyslipidaemia – an important cardiovascular disease (CVD) risk factor. However, niacin may also reduce blood pressure (BP), which is another important CVD risk factor. This review examines the limited publicly available data on niacin’s BP effects. Acute administration of immediate-release niacin may lower BP because of niacin’s acute vasodilatory effects. Although not always supported by clinical trial data, the package insert of a prescription, extended-release niacin describes niacin-induced acute hypotension. From a chronic standpoint, larger studies, such as the Coronary Drug Project, suggest that niacin may lower BP when administered over a longer period of time. Post hoc analyses of some of the more recent niacin clinical trials also support a more chronic, dose-dependent, BP-lowering effect of niacin. Because laropiprant [a prostaglandin D2 (PGD2) type 1 (DP1) receptor antagonist] does not attenuate niacin’s BP-lowering effects, it is unlikely that any chronic lowering of BP by niacin is due to dilation of dermal vessels through activation of the DP1 receptor by PGD2. Further research is warranted to evaluate the extent and mechanisms of niacin’s effects on BP. Review Criteria The information collected for this review included a literature search using key terms. The trials selected and described in this review were those that contained data describing nicotinic acid’s acute and chronic effects upon blood pressure. Message for the Clinic Nicotinic acid is a well-known lipid-altering drug. The improved cardiovascular outcomes with nicotinic acid therapy are thought to be related to its favourable lipid effects. However, less known is that nicotinic acid may also lower blood pressure, particularly at higher doses administered over a longer period of time. It is possible that some of nicotinic acid’s cardiovascular outcome benefits may be related to an improvement in high blood pressure, which is a major cardiovascular disease risk factor. Introduction Nicotinic acid (niacin) is a lipid-altering therapy used since the 1950s (1) that effectively raises high-density lipoprotein cholesterol (HDL-C) levels. Niacin also reduces triglyceride (TG), and particularly at higher doses, significantly lowers low-density lipoprotein cholesterol levels (2, 3). The clinical trial data support niacin as a therapeutic agent that reduces the risk of atherosclerotic coronary heart disease (CHD) events and reduces atherosclerotic progression in patients with CHD and/or other cardiovascular risk factors (4-18). Although the favourable lipid effects of niacin have been known for decades, it is less recognised that niacin may also favourably lower blood pressure (BP). The major adverse experience limiting the more widespread use of niacin is cutaneous vasodilation resulting in flushing (19-21). Other vasoactive properties of niacin include possible improvements in vascular headaches (22). The package insert for certain niacin prescription formulations describe rare cases of acute syncope, hypotension, and postural hypotension, especially when co-administered with ganglionic-blocking and vasoactive medications (23, 24). However, there is a paucity of peer-reviewed published literature regarding these acute effects and potential drug interactions, and published data regarding niacin’s chronic BP effects are limited. Methods The literature supporting this review was derived from an English-language search of PubMed using the title words ‘niacin’ or ‘nicotinic acid’ along with various Medical Subject Heading (MeSH) terms (in various combinations), including ‘adult’, ‘blood’, ‘blood pressure’, ‘blood pressure monitoring, ambulatory’, ‘blood supply’, ‘cardiac output’, ‘catecholamines’, ‘epinephrine’, ‘heart rate’, ‘hemodynamic processes’, ‘human’, ‘hypertension’, ‘hypotension’, ‘norepinephrine’, ‘randomized controlled trials’, ‘stroke volume’, ‘vascular resistance’ and ‘vasodilator agents’. Additional references were obtained from treatment guidelines and other English-language publications involving major clinical outcome reviews and angiographic or ultrasonographic studies that included reported mean BP at baseline and at end-point. Case reports and case studies were excluded. Results Acute effects of niacin on blood pressure and related haemodynamic parameters Two illustrative published studies specifically evaluated and reported the short-term effects of niacin on BP (25, 26). In one parallel-group study, BP and other haemodynamic parameters [e.g. waveform data on stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR)] were measured at 0, 15 and 30 min during a 30-min baseline period, followed by niacin infusion at 2.8 mg/min for up to 60 min. After niacin infusion, this study evaluated similar BP and haemodynamic measurements at 30, 45 and 60 min in 11 normotensive and 10 hypertensive subjects (stage 1 hypertension) (25). Intravenous niacin infusion (2.8 mg/min; ∼0.04 mg/kg/min) had no significant effects on BP in normotensive individuals (n = 11; average seated BP ≤ 130/80 mmHg) (25). CO (determined by pulse waveform analysis) was unaffected by niacin infusion at 30 and 60 min in these subjects; however, mean heart rate (HR) increased by 12% to 13%, from 59 beats/minute (bpm) at baseline to 66 to 67 bpm at 30 to 60 min (p < 0.01). This chronotropic effect of niacin in normotensives was associated with significant acute declines in (i) SVR 60 min after niacin infusion, (ii) SV at 30 min, (iii) overall vascular compliance [expressed as the SV/pulse pressure (PP) ratio] at 30 and 60 min and (iv) the mean large-artery elasticity index at 30 and 60 min (Table 1) (25). Small-artery elasticity did not undergo significant change. Table 1. Acute haemodynamic effects of niacin infusion in normotensive and hypertensive subjects Haemodynamic parameter (mean ± SD) Normotensives (n = 11) Hypertensives (n = 10) Baseline 30 min 60 min Baseline 30 min 60 min Systolic BP, mmHg 109 ± 3 109 ± 2 108 ± 2 136 ± 4 130 ± 3†§ 129 ± 3†§ Diastolic BP, mmHg 65 ± 2 62 ± 2 63 ± 2 89 ± 2 84 ± 3*§ 85 ± 3*§ Mean BP, mmHg 79 ± 2 78 ± 2 78 ± 2 105 ± 2 99 ± 2†§ 100 ± 3†§ Pulse pressure, mmHg 44 ± 2 46 ± 2 45 ± 2 47 ± 2 46 ± 2 44 ± 2* Heart rate, beats/min 59 ± 2 67 ± 3† 66 ± 3† 71 ± 3§ 81 ± 4†‡ 79 ± 4†‡ Stroke volume, ml/beat 91 ± 3 85 ± 5* 86 ± 4 88 ± 5 79 ± 6* 80 ± 6* Cardiac output, l/min 5.4 ± 0.2 5.5 ± 0.2 5.5 ± 0.15 6.0 ± 0.2 6.0 ± 3 5.9 ± 0.3 Systemic vascular resistance, dynes/s/cm5 1215 ± 44 1156 ± 45 1145 ± 41* 1492 ± 93‡ 1515 ± 182 1408 ± 99*‡ SV/PP (overall compliance), ml/mmHg 2.12 ± 0.09 1.84 ± 0.11† 1.93 ± 0.09* 1.91 ± 0.14 1.76 ± 0.19 1.89 ± 0.16 C1 (large-artery elasticity index) 15.8 ± 1.0 13.9 ± 1.0* 14.2 ± 1.0* 11.9 ± 1.0§ 11.3 ± 1.4 11.4 ± 1.2 C2 (small-artery elasticity index) 7.5 ± 1.1 7.1 ± 0.5 6.7 ± 1.1 6.5 ± 1.1 5.4 ± 1.1 5.6 ± 1.0 *p ≤ 0.05, †p ≤ 0.01 for comparison with baseline; ‡p ≤ 0.05, §p ≤ 0.01 for comparison between hypertensive and normotensive subjects. Reproduced with permission from Gadegbeku et al. (25). BP, blood pressure; SV, stroke volume; PP, pulse pressure. In contrast, this same study suggested that acute niacin administration may lower BP in patients with hypertension. Those with hypertension experienced significant decreases in systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), PP, SVR and SV from baseline at up to 60 min after the onset of niacin infusion (Table 1) (25). Significant decreases from baseline were observed in (i) mean SBP by a maximum of 7 mmHg (5%), (ii) DBP by a maximum of 4 mmHg (4%), (iii) MAP by a maximum of 6 mmHg (6%), (iv) PP by a maximum of 3 mmHg (6%), (v) SVR by a maximum of 84 dynes/s/cm5 (6%) at 60 min after an initial increase and (vi) SV by a maximum of 9 ml/beat (10%; each p ≤ 0.05 vs. baseline). HR increased significantly in patients with hypertension, by a similar proportion to the effect observed in normotensives [maximum = 10 bpm (11%); p ≤ 0.01 vs. baseline], although patients with hypertension had a significantly higher HR at baseline (71 vs. 59 bpm; p ≤ 0.01). Unlike their normotensive counterparts, patients with hypertension did not experience significant acute declines in overall vascular compliance or the large-artery elasticity index (25). One proposed mechanism for niacin’s divergent effects on BP in normotensives compared with those with hypertension is differential effects upon large-artery compliance. In normotensive patients, chronotropic responses to niacin infusion were similar to the responses in those with hypertension, but these acute increases in HR did not affect CO in normotensives, possibly because of a countervailing significant decrease in SV. The finding of stable BP despite a significant acute decrease in SVR in normotensives may suggest that peripheral vasodilation triggers counter-regulatory mechanisms, potentially with vasoconstriction in other vascular beds. The significant acute depressor effects of niacin infusion in patients with hypertension may reflect a reduced ability to modulate large-artery compliance. Those with hypertension are known to have decreased vascular compliance and may also have vascular stiffness that is less responsive to changes in counter-regulatory vasoconstrictor hormones (27). The fact that the chronotropic effects of niacin infusion were similar in patients with or without hypertension, but were insufficient to maintain BP in those with hypertension, may also suggest impaired baroreceptor responses in these patients (28). Another mechanism, albeit less likely, for the significant acute depressor effects of niacin in patients with hypertension is an increased prostacyclin response to niacin in the vasculature of these patients compared with their normotensive counterparts (25). Given that niacin presumably has similar metabolic effects in those with high BP compared with those with normal BP, then niacin-related metabolic effects would not be a plausible explanation for BP differences between hypertensive versus non-hypertensive groups (25, 29). However, niacin does affect metabolic parameters often thought to affect BP, such as circulating free fatty acids (FFAs). After acute oral administration of 500 mg of niacin in man, arterial FFA levels decrease within minutes. After about 2 h, FFAs undergo a ‘rebound’ elevation (30). In longer-term trials of chronic oral niacin administration, this ‘rebound’ (21, 31-33) has been described to last as long as ≥ 9 h, resulting in increased circulating FFAs (21, 31-34). Increased FFAs have been hypothesised to contribute to insulin resistance (26, 34), which, in turn, may contribute to high BP (35). The observation that niacin acutely decreases FFA levels for a few hours might conceivably be consistent with an acute decrease in BP. However, it is unclear if niacin administration increases or decreases total daily FFA release and circulatory exposure. Furthermore, studies suggest that extended-release niacin may have less potential for FFA rebound (vs. immediate-release formulations), especially after several months of use (36). In the previously described study regarding intravenous niacin’s effects upon BP, the haemodynamic responses to niacin in hypertensive vs. normotensive subjects were not ascribed to between-group differences in effects of niacin on FFAs or TG (25). Because the relationship of niacin’s effects on FFAs and BP is uncertain, it seems unlikely that the short-term, acute reduction in FFA would account for acute BP lowering. From a more chronic standpoint, if a rebound increased in FFA and increased in insulin resistance were anticipated to have any BP effect, then it would be expected to raise, not lower, chronic BP (35). A second illustrative study evaluating the potential relationship between niacin’s effects on FFAs, insulin sensitivity, and BP was a prospective, randomised, double-blind, placebo-controlled crossover study in seven healthy volunteers (26). The active treatment was immediate-release niacin orally administered as one 250-mg capsule twice daily for the first week, followed by two 250-mg capsules twice daily for the second week. Using the hyperinsulinaemic–euglycaemic clamp method, the investigators found that niacin reduced insulin sensitivity compared with placebo and significantly decreased the rate of glucose infusion needed to maintain euglycaemia (26.2 vs. 31.5 μmol/kg/min; p = 0.002). This was attributable to a decline in non-oxidative glucose disposal associated with niacin treatment. Interestingly, with the twice daily dosing regimen, fasting glucose, insulin, FFAs, energy intake and substrate oxidation were unchanged compared with placebo. However, despite the increase in insulin resistance, niacin administration did not significantly affect SBP or DBP compared with placebo (Table 2) (26). Table 2. Acute metabolic and haemodynamic effects of niacin Parameter (mean ± SEM) Placebo Niacin Glucose infusion rate, μmol/kg FFM/min 41.5 ± 5.8 34.2 ± 6.8* Non-oxidative glucose disposal, mg/min 314 ± 73 218 ± 66* Mean 24-h blood pressure (BP), mmHg 82.1 ± 2.0 81.8 ± 3.3 24-h systolic BP, mmHg 112.6 ± 2.3 115.3 ± 4.4 24-h diastolic BP, mmHg 67.1 ± 2.0 65.1 ± 2.8 Forearm blood flow, ml/100 ml/min 4.3 ± 0.3 4.8 ± 0.4 Plasma nitrate, μmol/l 18.4 ± 2.4 17.0 ± 4.2 Urinary nitrate, μmol/l 686 ± 126 705 ± 194 Urinary prostaglandin E2, ng/24 h 287 ± 56 195 ± 42 FFM, fat-free mass. *p = 0.002. Reproduced with permission from Kelly et al. (26). Thus the extent to which, and the mechanisms by which short-term niacin administration affects BP remain unclear. However, what is clear is that niacin administration often causes flushing because of marked vasodilation, and up to a 100% increase in cutaneous perfusion and up to a 200% increase in skeletal-muscle blood perfusion (37). Given the significant surface area of skin and the degree of increased cutaneous blood perfusion that can occur with niacin, one might speculate that when niacin does acutely lower BP, in the absence of cardiac dysrhythmias, this may, in part, be due to shunting of blood from large vessels to dilated cutaneous small vessels (and possibly skeletal muscle vessels). Clinically, during whole-body heat stress, active vasodilation is known to account for 85–95% of the overall cutaneous vasodilator response, which may increase cutaneous vascular conductance and contribute to orthostasis (38). It is therefore plausible that vasodilatation might be responsible for the acute BP-lowering effects of niacin in rare patients, although other cardiovascular mechanisms (such as direct effects on the heart and other vessels) cannot be excluded. Effects of chronic niacin therapy on blood pressure Among studies of chronic niacin administration that reported both baseline and on-treatment mean values for SBP and DBP (or changes in BP), most described BP changes from baseline to end-point (or between niacin-treated and control groups) that were not statistically significant (Table 3) (6, 8, 13, 18, 39). Although a substantial proportion of subjects in these trials had a history of hypertension and/or used antihypertensive medications (40–70%) (4, 18), these trials generally failed to report the use of antihypertensive medications, changes in medication during the study, or incident hypertension (or hypotension) in patients receiving niacin or niacin-containing regimens compared with control groups. Thus, these trials are not optimal in assessing the potential chronic BP-lowering effects of niacin. Table 3. Effects of niacin and niacin-containing regimens on blood pressure in major outcome studies with mean values reported at both baseline and end-point Study Patients Duration; outcome measure Daily dose of regimen (n with available BL and EP data for BP) Baseline mean BP, mmHg End-point (or on-trial) mean BP, mmHg Comparison Niacin monotherapy Coronary Drug Project (39) n = 8341 men with previous MI 5–8.5 years; total mortality (also coronary events) Niacin 3.0 g (n = 621) SBP = 129.7DBP = 81.7 SBP = 131.7DBP = 80.2 z = −1.40* vs. placebo for SBPz = −1.11* vs. placebo for DBP Placebo (n = 1607)Placebo (n = 1606) SBP = 129.1DBP = 81.5 SBP = 132.3DBP = 80.6 See above Niacin-containing regimens AFREGS, Whitney et al. (18) n = 143 military retirees ages < 76 years with CHD and low HDL-C 30 months (50 weeks for BP); primary: % change in global angiographic stenosis; secondary: composite end-point (hosp. for angina, MI, TIA and stroke, death, and CV procedures (also angiographic end-points) Stepped care (n = 71): gemfibrozil 1.2 g/dayNiacin 0.25–3.0 g/dayCME: 2–16 g/day SBP = 139.0DBP = 75.3 ΔSBP = −9.8%ΔDBP = 6.8% SBP p = 0.14 vs. placeboDBP p > 0.2 vs. placebo Placebo (n = 72) SBP = 138.9DBP = 76.3 ΔSBP = −6.6%ΔDBP = 4.3% HATS, Brown et al. (8) n = 160 patients with CHD and low HDL-C; 146 patients completed treatment 3 years; arteriographic evidence of Δcoronary stenosis + first CV event (death, MI, stroke, revascularisation) Niacin 0.5–4 g (mean = 2.4 g) + simvastatin 10–20 mg (mean = 13 mg) (n = 33) SBP/DBP = 124/78 SBP/DBP = 125/77 ns vs. baseline Niacin–simvastatin (as above) + antioxidants (800 IU vitamin E, 1 g, vitamin C; 25 mg, β-carotene; 100 μg selenium) (n = 40) SBP/DBP = 130/81 SBP/DBP = 129/79 p < 0.05 vs. baseline Placebo (n = 34) SBP/DBP = 125/80 SBP/DBP = 127/80 ns vs. baseline CLAS, Blankenhorn et al. (6) n = 78 non-smoking men ages 40–59 years with history of CABG Up to 4 years; common carotid intima-media thickening Niacin: mean = 4.2 gColestipol: mean = 30.1 g (n = 24) SBP = 122DBP = 79 SBP = 118DBP = 78 BL: p = 0.33 vs. placebo (SBP)p = 0.32 vs. placebo (DBP)EP: p = 0.86 vs. placebo (SBP)p = 0.83 vs. placebo (DBP) Placebo (n = 22) SBP = 118DBP = 77 SBP = 119DBP = 89 Stockholm Ischaemic Heart Study, Carlson and Rosenhamer (13) n = 555 consecutive MI survivors ages < 70 years Up to 5 years; total mortality, CV-specific mortality; non-fatal CV events Colestipol = 2 g + niacin = 3 g(n = 279 BL; n = 238, 1 year; n = 211, 2 years; n = 183, 3 years) SBP = 133DBP = 82 1 year: SBP = 148DBP = 862 years: SBP = 149DBP = 883 years: SBP = 148DBP = 87 p = ns for each comparison vs. control at each time point Control (n = 276 BL; n = 245, 1 year; n = 211, 2 years; n = 185, 3 years) SBP = 128DBP = 79 1 year: SBP = 146DBP = 862 years: SBP = 146DBP = 873 years: SBP = 146DBP = 85 *z > 2.58 or < −2.58 was considered to be statistically significant (at two-sided α = 0.01). AFREGS, Armed Forces Regression Study; BL, baseline; BP, blood pressure; CABG, coronary artery bypass surgery; CHD, coronary heart disease; CLAS, Cholesterol Lowering Atherosclerosis Study; CME, cholestyramine; CV, cardiovascular; DBP, diastolic blood pressure; EP, end-point; HATS, HDL-Atherosclerosis Treatment Study; HDL-C, high-density lipoprotein cholesterol; MI, myocardial infarction; ns, not significant; SBP, systolic blood pressure; TIA, transient ischemic attack. In the original Coronary Drug Project (CDP) report, niacin significantly reduced the incidence of definite, non-fatal myocardial infarction over 5–8.5 years of follow-up. No significant changes in BP were found from baseline to end-point (Table 3) (39). However, in a post hoc analysis of the CDP in patients with metabolic syndrome according to criteria established by the National Cholesterol Education Program (40), treatment with niacin was associated with a mild but statistically significant reduction in BP compared with placebo at treatment year 1. Compared with baseline, SBP declined by a mean of 2.2 mmHg (vs. +0.8 mmHg with placebo; p < 0.0001), and DBP declined by 2.9 mmHg (vs. −0.9 mmHg with placebo; p < 0.0001) (12). By categorical analysis of the original CDP data, significantly lower proportions of patients randomised to niacin (vs. placebo) had at least one elevated SBP or DBP reading during 5 years of treatment (excluding patients with abnormal values at baseline). A total of 26.8% of the niacin group had SBP ≥ 160 mmHg compared with 30.6% of the placebo group (z = −2.23). A total of 8.7% of the niacin group had SBP ≥ 180 mmHg compared with 10.7% of the placebo group (z = −1.77). Corresponding data for DBP were 53.1% of niacin patients having DBP ≥ 90 mmHg compared with 60.4% for placebo (z = −3.44) and 6.3% of niacin patients having DBP ≥ 110 mmHg compared with 9.2% for placebo (z = −2.84), indicating a significant between-group difference (39). More recent data of large numbers of niacin-treated patients also support these findings. Laropiprant is being investigated as an inhibitor of the prostaglandin D2 (PGD2) receptor, which mediates flushing (41, 42). A short-term titration study of 412 patients administered extended-release niacin 1–2 g/day with laropiprant for up to 8 weeks showed no significant change in BP from baseline (43). However, in a longer (24-week) and much larger (n = 1613) study, patients with dyslipidaemia were randomised to one of three treatment arms: extended-release niacin 1 g, extended-release niacin 1 g plus laropiprant 20 mg, or placebo once daily for 4 weeks. Afterwards, the doses were doubled for another 20 weeks of treatment (3). In a post hoc analysis of this study, reductions in BP were significant in patients receiving either extended-release niacin or extended-release niacin/laropiprant compared with placebo at both 4 and 24 weeks, and this effect seemed to be dose dependent (Figure 1) (3). Laropiprant neither abolished nor attenuated the BP-lowering effects of niacin, suggesting that the effects of chronic niacin in lowering BP is not because of PGD2-mediated flushing. Figure 1Open in figure viewerPowerPoint Effects of extended-release niacin alone or with laropiprant on blood pressure. Reductions in blood pressure were significant in patients receiving either extended-release niacin (ERN) or extended-release niacin/laropiprant (ERN/LRPT) compared with placebo at both 4 and 24 weeks (3) Discussion Clinical trials suggest that infusion of niacin may acutely lower BP in some individuals. Clinical practice experience suggests that, rarely, oral administration may also acutely lower BP, especially when severe niacin-induced flushing occurs. This acute BP lowering is described in the package insert of the currently marketed prescription niacin. It is tempting to speculate that the acute BP effect of acute niacin administration is linked to the vasodilatation induced by niacin. From an efficacy standpoint, niacin activates the G protein-coupled GPR109A receptors on cells such as adipocytes, which may favourably influence lipid metabolism. From an adverse experience standpoint, these same receptors are also found on epidermal Langerhans cells in the skin (44), which generate prostaglandins such as PGD2, which in turn, stimulates PGD2 type 1 (PD1) receptors on vascular smooth-muscle cells in dermal arterioles, causing vasodilatation and flushing. GPR109A activation on Langerhans cells may also generate PGE2 and possibly other mediators that could conceivably influence vascular tone and thus may also contribute to lower BP. Additionally, niacin could conceivably activate its receptor on other cell types (including other components of the cardiovascular system) that might lead to haemodynamic changes. Finally, niacin could have other ‘off-target’ effects (not mediated by GPR109A) that could have acute BP effects. The potential chronic BP-lowering effects of niacin are best supported by longer niacin trials involving larger numbers of patients. The recent clinical trial experience with laropiprant suggests that any chronic BP-lowering effects of niacin are not likely mediated by DP1 receptors or cutaneous vasodilatation. Thus, the mechanism that might account for chronic lowering of BP by niacin is unknown. One intriguing possibility is that niacin may lower BP at least in part, because of favourable lipid-altering effects that might improve endothelial function. One of the more important lipid effects of niacin is increasing HDL-C levels. HDL particles have many important lipid, antioxidant and anti-inflammatory functions that favourably affect the vasculature. HDL-C levels directly correlate with measures of endothelial function (45). The apolipoprotein B/A-1 ratio is inversely associated with endothelium-dependent vasodilation (46). HDL activates endothelial nitric oxide synthase and generates nitric oxide in endothelial cells in vitro and in vivo (47), and niacin’s HDL-mediated endothelial nitric oxide production may contribute to modest chronic BP lowering with long-term therapy. It is especially interesting to note that, when niacin has been reported to chronically lower BP, the effects have generally been progressive and gradual, occurring over many months or years. These findings correlate to one of the more interesting therapeutic effects of niacin, which is that HDL-C levels may continue to rise, even after many months, and up to a year, after treatment onset (48). It is somewhat surprising that chronic BP lowering observed with long-term niacin administration, as indicated in studies such as the CDP, has not been more completely evaluated and better characterised, especially given that (i) niacin has been in clinical use for decades; (ii) acute niacin infusion sometimes acutely lowers BP; (iii) multiple clinical trials support the conclusion that niacin favourably aff
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19900420完成签到 ,获得积分10
35秒前
zxt完成签到,获得积分10
53秒前
1分钟前
1分钟前
笑点低发布了新的文献求助10
1分钟前
中西西完成签到 ,获得积分10
1分钟前
1分钟前
好好发布了新的文献求助10
1分钟前
MaoTing完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
专一的芒果完成签到 ,获得积分10
2分钟前
好好发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助好好采纳,获得10
2分钟前
来杯姜茶完成签到,获得积分10
2分钟前
橘子小西完成签到 ,获得积分10
2分钟前
3分钟前
归tu发布了新的文献求助10
3分钟前
归tu完成签到,获得积分20
3分钟前
畅快的枫完成签到,获得积分10
3分钟前
bkagyin应助归tu采纳,获得10
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
好好发布了新的文献求助10
3分钟前
科研通AI2S应助好好采纳,获得10
3分钟前
Owen应助笑点低采纳,获得10
3分钟前
Asteroid发布了新的文献求助10
4分钟前
4分钟前
Asteroid完成签到,获得积分10
4分钟前
两个轮发布了新的文献求助10
4分钟前
好好完成签到,获得积分10
4分钟前
Panini完成签到 ,获得积分10
4分钟前
5分钟前
remedy完成签到 ,获得积分10
5分钟前
怡然的友容完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
张可完成签到 ,获得积分10
6分钟前
科目三应助天天扫大街采纳,获得10
6分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238869
求助须知:如何正确求助?哪些是违规求助? 2884202
关于积分的说明 8232768
捐赠科研通 2552275
什么是DOI,文献DOI怎么找? 1380569
科研通“疑难数据库(出版商)”最低求助积分说明 649063
邀请新用户注册赠送积分活动 624754