A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study

肝细胞癌 医学 内科学 肝硬化 乙型肝炎表面抗原 套式病例对照研究 队列 生物标志物 肿瘤科 胃肠病学 乙型肝炎病毒 病例对照研究 丙型肝炎 接收机工作特性 肝癌 乙型肝炎 免疫学 病毒 化学 生物化学
作者
Xue-Jia Lin,Yutian Chong,Zhiwei Guo,Chen Xie,Xiao-Jing Yang,Qi Zhang,Shengping Li,Yujuan Xiong,Yunfei Yuan,Min Jun,Wei-Hua Jia,Yusheng Jie,Min-Shan Chen,Mei-Xian Chen,Jian‐Hong Fang,Chunxian Zeng,Yaojun Zhang,Rong Guo,Yuankai Wu,Guoli Lin,Limin Zheng,Shi‐Mei Zhuang
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:16 (7): 804-815 被引量:257
标识
DOI:10.1016/s1470-2045(15)00048-0
摘要

The ability of circulating microRNAs (miRNAs) to detect preclinical hepatocellular carcinoma has not yet been reported. We aimed to identify and assess a serum miRNA combination that could detect the presence of clinical and preclinical hepatocellular carcinoma in at-risk patients.We did a three-stage study that included healthy controls, inactive HBsAg carriers, individuals with chronic hepatitis B, individuals with hepatitis B-induced liver cirrhosis, and patients with diagnosed hepatocellular carcinoma from four hospitals in China. We used array analysis and quantitative PCR to identify 19 candidate serum miRNAs that were increased in six patients with hepatocellular carcinoma compared with eight control patients with chronic hepatitis B. Using a training cohort of patients with hepatocellular carcinoma and controls, we built a serum miRNA classifier to detect hepatocellular carcinoma. We then validated the classifiers' ability in two independent cohorts of patients and controls. We also established the classifiers' ability to predict preclinical hepatocellular carcinoma in a nested case-control study with sera prospectively collected from patients with hepatocellular carcinoma before clinical diagnosis and from matched individuals with hepatitis B who did not develop cancer from the same surveillance programme. We used the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to evaluate diagnostic performance, and compared the miRNA classifier with α-fetoprotein at a cutoff of 20 ng/mL (AFP20).Between Aug 1, 2009, and Aug 31, 2013, we recruited 257 participants to the training cohort, and 352 and 139 participants to the two independent validation cohorts. In the third validation cohort, 27 patients with hepatocellular carcinoma and 135 matched controls were included in the nested case-control study, which ran from Aug 1, 2009, to Aug 31, 2014. We identified a miRNA classifier (Cmi) containing seven differentially expressed miRNAs (miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-505) that could detect hepatocellular carcinoma. Cmi showed higher accuracy than AFP20 to distinguish individuals with hepatocellular carcinoma from controls in the validation cohorts, but not in the training cohort (AUC 0·826 [95% CI 0·771-0·880] vs 0·814 [0·756-0·872], p=0·72 in the training cohort; 0·817 [0·769-0·865] vs 0·709 [0·653-0·765], p=0·00076 in validation cohort 1; and 0·884 [0·818-0·951] vs 0·796 [0·706-0·886], p=0·042 for validation cohort 2). In all four cohorts, Cmi had higher sensitivity (range 70·4-85·7%) than did AFP20 (40·7-69·4%) to detect hepatocellular carcinoma at the time of diagnosis, whereas its specificity (80·0-91·1%) was similar to that of AFP20 (84·9-100%). In the nested case-control study, sensitivity of Cmi to detect hepatocellular carcinoma was 29·6% (eight of 27 cases) 12 months before clinical diagnosis, 48·1% (n=13) 9 months before clinical diagnosis, 48·1% (n=13) 6 months before clinical diagnosis, and 55·6% (n=15) 3 months before clinical diagnosis, whereas sensitivity of AFP20 was only 7·4% (n=2), 11·1% (n=3), 18·5% (n=5), and 22·2% (n=6) at the corresponding timepoints (p=0·036, p=0·0030, p=0·021, p=0·012, respectively). Cmi had a larger AUC than did AFP20 to identify small-size (AUC 0·833 [0·782-0·883] vs 0·727 [0·664-0·792], p=0·0018) and early-stage (AUC 0·824 [0·781-0·868] vs 0·754 [0·702-0·806], p=0·015) hepatocellular carcinoma and could also detect α-fetoprotein-negative (AUC 0·825 [0·779-0·871]) hepatocellular carcinoma.Cmi is a potential biomarker for hepatocellular carcinoma, and can identify small-size, early-stage, and α-fetoprotein-negative hepatocellular carcinoma in patients at risk. The miRNA classifier could be valuable to detect preclinical hepatocellular carcinoma, providing patients with a chance of curative resection and longer survival.National Key Basic Research Program, National Science and Technology Major Project, National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西吴完成签到 ,获得积分10
3秒前
4秒前
underway发布了新的文献求助10
5秒前
火焰向上完成签到,获得积分10
7秒前
简单幸福发布了新的文献求助20
10秒前
YamDaamCaa应助Xu采纳,获得30
12秒前
胡杨完成签到,获得积分10
13秒前
iuhgnor完成签到,获得积分0
15秒前
牧尔芙发布了新的文献求助10
16秒前
FFFFFFG完成签到,获得积分10
19秒前
19秒前
nusiew完成签到,获得积分10
21秒前
fomo完成签到,获得积分10
23秒前
23秒前
周周南完成签到 ,获得积分10
31秒前
gmc完成签到 ,获得积分10
32秒前
Jun完成签到 ,获得积分10
33秒前
37秒前
鲍复天完成签到,获得积分10
42秒前
武广敏完成签到,获得积分10
43秒前
股价发布了新的文献求助10
44秒前
简单幸福发布了新的文献求助40
44秒前
like完成签到 ,获得积分10
1分钟前
轻语完成签到 ,获得积分10
1分钟前
饱满一手完成签到 ,获得积分10
1分钟前
脑洞疼应助股价采纳,获得10
1分钟前
完美世界应助股价采纳,获得10
1分钟前
晨珂完成签到,获得积分10
1分钟前
1分钟前
沐沐完成签到 ,获得积分10
1分钟前
丘比特应助Xu采纳,获得10
1分钟前
开心浩阑应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
爱听歌的糖豆完成签到,获得积分10
1分钟前
慕青应助红枣枸杞粥采纳,获得10
1分钟前
简单幸福完成签到,获得积分10
1分钟前
煜琪完成签到 ,获得积分10
1分钟前
SC完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255