A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study

肝细胞癌 医学 内科学 肝硬化 乙型肝炎表面抗原 套式病例对照研究 队列 生物标志物 肿瘤科 胃肠病学 乙型肝炎病毒 病例对照研究 丙型肝炎 接收机工作特性 肝癌 乙型肝炎 免疫学 病毒 生物化学 化学
作者
Xue-Jia Lin,Yutian Chong,Zhiwei Guo,Chen Xie,Xiao-Jing Yang,Qi Zhang,Shengping Li,Yujuan Xiong,Yunfei Yuan,Min Jun,Wei-Hua Jia,Yusheng Jie,Min-Shan Chen,Mei-Xian Chen,Jian‐Hong Fang,Chunxian Zeng,Yaojun Zhang,Rong Guo,Yuankai Wu,Guoli Lin,Limin Zheng,Shi‐Mei Zhuang
出处
期刊:Lancet Oncology [Elsevier]
卷期号:16 (7): 804-815 被引量:257
标识
DOI:10.1016/s1470-2045(15)00048-0
摘要

The ability of circulating microRNAs (miRNAs) to detect preclinical hepatocellular carcinoma has not yet been reported. We aimed to identify and assess a serum miRNA combination that could detect the presence of clinical and preclinical hepatocellular carcinoma in at-risk patients.We did a three-stage study that included healthy controls, inactive HBsAg carriers, individuals with chronic hepatitis B, individuals with hepatitis B-induced liver cirrhosis, and patients with diagnosed hepatocellular carcinoma from four hospitals in China. We used array analysis and quantitative PCR to identify 19 candidate serum miRNAs that were increased in six patients with hepatocellular carcinoma compared with eight control patients with chronic hepatitis B. Using a training cohort of patients with hepatocellular carcinoma and controls, we built a serum miRNA classifier to detect hepatocellular carcinoma. We then validated the classifiers' ability in two independent cohorts of patients and controls. We also established the classifiers' ability to predict preclinical hepatocellular carcinoma in a nested case-control study with sera prospectively collected from patients with hepatocellular carcinoma before clinical diagnosis and from matched individuals with hepatitis B who did not develop cancer from the same surveillance programme. We used the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to evaluate diagnostic performance, and compared the miRNA classifier with α-fetoprotein at a cutoff of 20 ng/mL (AFP20).Between Aug 1, 2009, and Aug 31, 2013, we recruited 257 participants to the training cohort, and 352 and 139 participants to the two independent validation cohorts. In the third validation cohort, 27 patients with hepatocellular carcinoma and 135 matched controls were included in the nested case-control study, which ran from Aug 1, 2009, to Aug 31, 2014. We identified a miRNA classifier (Cmi) containing seven differentially expressed miRNAs (miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-505) that could detect hepatocellular carcinoma. Cmi showed higher accuracy than AFP20 to distinguish individuals with hepatocellular carcinoma from controls in the validation cohorts, but not in the training cohort (AUC 0·826 [95% CI 0·771-0·880] vs 0·814 [0·756-0·872], p=0·72 in the training cohort; 0·817 [0·769-0·865] vs 0·709 [0·653-0·765], p=0·00076 in validation cohort 1; and 0·884 [0·818-0·951] vs 0·796 [0·706-0·886], p=0·042 for validation cohort 2). In all four cohorts, Cmi had higher sensitivity (range 70·4-85·7%) than did AFP20 (40·7-69·4%) to detect hepatocellular carcinoma at the time of diagnosis, whereas its specificity (80·0-91·1%) was similar to that of AFP20 (84·9-100%). In the nested case-control study, sensitivity of Cmi to detect hepatocellular carcinoma was 29·6% (eight of 27 cases) 12 months before clinical diagnosis, 48·1% (n=13) 9 months before clinical diagnosis, 48·1% (n=13) 6 months before clinical diagnosis, and 55·6% (n=15) 3 months before clinical diagnosis, whereas sensitivity of AFP20 was only 7·4% (n=2), 11·1% (n=3), 18·5% (n=5), and 22·2% (n=6) at the corresponding timepoints (p=0·036, p=0·0030, p=0·021, p=0·012, respectively). Cmi had a larger AUC than did AFP20 to identify small-size (AUC 0·833 [0·782-0·883] vs 0·727 [0·664-0·792], p=0·0018) and early-stage (AUC 0·824 [0·781-0·868] vs 0·754 [0·702-0·806], p=0·015) hepatocellular carcinoma and could also detect α-fetoprotein-negative (AUC 0·825 [0·779-0·871]) hepatocellular carcinoma.Cmi is a potential biomarker for hepatocellular carcinoma, and can identify small-size, early-stage, and α-fetoprotein-negative hepatocellular carcinoma in patients at risk. The miRNA classifier could be valuable to detect preclinical hepatocellular carcinoma, providing patients with a chance of curative resection and longer survival.National Key Basic Research Program, National Science and Technology Major Project, National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小羊发布了新的文献求助10
刚刚
和谐的如柏完成签到,获得积分10
1秒前
科研不是科幻完成签到,获得积分10
3秒前
隐形曼青应助竹翠峰采纳,获得10
3秒前
6秒前
星辰大海应助淡定亦云采纳,获得10
7秒前
悟空完成签到 ,获得积分10
8秒前
10秒前
zz关注了科研通微信公众号
11秒前
11秒前
12秒前
大个应助yyjiang采纳,获得10
12秒前
12秒前
tjfwg完成签到,获得积分10
14秒前
ly发布了新的文献求助10
14秒前
玉衡发布了新的文献求助10
15秒前
15秒前
肉丝发布了新的文献求助10
18秒前
洛洛发布了新的文献求助10
18秒前
雷棱铄发布了新的文献求助10
19秒前
小白菜完成签到 ,获得积分10
19秒前
欣喜电源完成签到,获得积分10
20秒前
21秒前
852应助yeluoyezhi采纳,获得10
22秒前
23秒前
23秒前
SmuA发布了新的文献求助10
24秒前
单薄的飞风完成签到,获得积分10
26秒前
summer发布了新的文献求助10
26秒前
obaica发布了新的文献求助10
26秒前
雷棱铄完成签到,获得积分20
26秒前
肉丝完成签到,获得积分10
27秒前
27秒前
yyjiang发布了新的文献求助10
28秒前
29秒前
Orange应助科研通管家采纳,获得10
29秒前
不懈奋进应助科研通管家采纳,获得30
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352881
求助须知:如何正确求助?哪些是违规求助? 2977777
关于积分的说明 8681751
捐赠科研通 2658830
什么是DOI,文献DOI怎么找? 1455960
科研通“疑难数据库(出版商)”最低求助积分说明 674190
邀请新用户注册赠送积分活动 664884