亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study

肝细胞癌 医学 内科学 肝硬化 乙型肝炎表面抗原 套式病例对照研究 队列 生物标志物 肿瘤科 胃肠病学 乙型肝炎病毒 病例对照研究 丙型肝炎 接收机工作特性 肝癌 乙型肝炎 免疫学 病毒 化学 生物化学
作者
Xue-Jia Lin,Yutian Chong,Zhiwei Guo,Chen Xie,Xiao-Jing Yang,Qi Zhang,Shengping Li,Yujuan Xiong,Yunfei Yuan,Min Jun,Wei-Hua Jia,Yusheng Jie,Min-Shan Chen,Mei-Xian Chen,Jian‐Hong Fang,Chunxian Zeng,Yaojun Zhang,Rong Guo,Yuankai Wu,Guoli Lin
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:16 (7): 804-815 被引量:266
标识
DOI:10.1016/s1470-2045(15)00048-0
摘要

The ability of circulating microRNAs (miRNAs) to detect preclinical hepatocellular carcinoma has not yet been reported. We aimed to identify and assess a serum miRNA combination that could detect the presence of clinical and preclinical hepatocellular carcinoma in at-risk patients.We did a three-stage study that included healthy controls, inactive HBsAg carriers, individuals with chronic hepatitis B, individuals with hepatitis B-induced liver cirrhosis, and patients with diagnosed hepatocellular carcinoma from four hospitals in China. We used array analysis and quantitative PCR to identify 19 candidate serum miRNAs that were increased in six patients with hepatocellular carcinoma compared with eight control patients with chronic hepatitis B. Using a training cohort of patients with hepatocellular carcinoma and controls, we built a serum miRNA classifier to detect hepatocellular carcinoma. We then validated the classifiers' ability in two independent cohorts of patients and controls. We also established the classifiers' ability to predict preclinical hepatocellular carcinoma in a nested case-control study with sera prospectively collected from patients with hepatocellular carcinoma before clinical diagnosis and from matched individuals with hepatitis B who did not develop cancer from the same surveillance programme. We used the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to evaluate diagnostic performance, and compared the miRNA classifier with α-fetoprotein at a cutoff of 20 ng/mL (AFP20).Between Aug 1, 2009, and Aug 31, 2013, we recruited 257 participants to the training cohort, and 352 and 139 participants to the two independent validation cohorts. In the third validation cohort, 27 patients with hepatocellular carcinoma and 135 matched controls were included in the nested case-control study, which ran from Aug 1, 2009, to Aug 31, 2014. We identified a miRNA classifier (Cmi) containing seven differentially expressed miRNAs (miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-505) that could detect hepatocellular carcinoma. Cmi showed higher accuracy than AFP20 to distinguish individuals with hepatocellular carcinoma from controls in the validation cohorts, but not in the training cohort (AUC 0·826 [95% CI 0·771-0·880] vs 0·814 [0·756-0·872], p=0·72 in the training cohort; 0·817 [0·769-0·865] vs 0·709 [0·653-0·765], p=0·00076 in validation cohort 1; and 0·884 [0·818-0·951] vs 0·796 [0·706-0·886], p=0·042 for validation cohort 2). In all four cohorts, Cmi had higher sensitivity (range 70·4-85·7%) than did AFP20 (40·7-69·4%) to detect hepatocellular carcinoma at the time of diagnosis, whereas its specificity (80·0-91·1%) was similar to that of AFP20 (84·9-100%). In the nested case-control study, sensitivity of Cmi to detect hepatocellular carcinoma was 29·6% (eight of 27 cases) 12 months before clinical diagnosis, 48·1% (n=13) 9 months before clinical diagnosis, 48·1% (n=13) 6 months before clinical diagnosis, and 55·6% (n=15) 3 months before clinical diagnosis, whereas sensitivity of AFP20 was only 7·4% (n=2), 11·1% (n=3), 18·5% (n=5), and 22·2% (n=6) at the corresponding timepoints (p=0·036, p=0·0030, p=0·021, p=0·012, respectively). Cmi had a larger AUC than did AFP20 to identify small-size (AUC 0·833 [0·782-0·883] vs 0·727 [0·664-0·792], p=0·0018) and early-stage (AUC 0·824 [0·781-0·868] vs 0·754 [0·702-0·806], p=0·015) hepatocellular carcinoma and could also detect α-fetoprotein-negative (AUC 0·825 [0·779-0·871]) hepatocellular carcinoma.Cmi is a potential biomarker for hepatocellular carcinoma, and can identify small-size, early-stage, and α-fetoprotein-negative hepatocellular carcinoma in patients at risk. The miRNA classifier could be valuable to detect preclinical hepatocellular carcinoma, providing patients with a chance of curative resection and longer survival.National Key Basic Research Program, National Science and Technology Major Project, National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
田様应助海饼干采纳,获得10
15秒前
29秒前
31秒前
海饼干发布了新的文献求助10
36秒前
41秒前
46秒前
师兄的结果复现不出完成签到,获得积分10
50秒前
善学以致用应助曾泰平采纳,获得10
1分钟前
1分钟前
曾泰平发布了新的文献求助10
1分钟前
黑翅鸢完成签到 ,获得积分10
1分钟前
斯文败类应助归海亦云采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助50
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
徐小树发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995482
求助须知:如何正确求助?哪些是违规求助? 4242486
关于积分的说明 13216168
捐赠科研通 4038471
什么是DOI,文献DOI怎么找? 2209726
邀请新用户注册赠送积分活动 1220507
关于科研通互助平台的介绍 1139443