计算机科学
非参数统计
群体智能
成对比较
集合(抽象数据类型)
计算智能
正态性
算法
参数统计
问题陈述
进化算法
独立性(概率论)
会话(web分析)
粒子群优化
人工智能
机器学习
统计假设检验
管理科学
统计
计量经济学
数学
万维网
经济
程序设计语言
作者
Joaquín Derrac,Salvador García,Daniel Molina,Francisco Herrera
标识
DOI:10.1016/j.swevo.2011.02.002
摘要
The interest in nonparametric statistical analysis has grown recently in the field of computational intelligence. In many experimental studies, the lack of the required properties for a proper application of parametric procedures–independence, normality, and homoscedasticity–yields to nonparametric ones the task of performing a rigorous comparison among algorithms. In this paper, we will discuss the basics and give a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis. The test problems of the CEC’2005 special session on real parameter optimization will help to illustrate the use of the tests throughout this tutorial, analyzing the results of a set of well-known evolutionary and swarm intelligence algorithms. This tutorial is concluded with a compilation of considerations and recommendations, which will guide practitioners when using these tests to contrast their experimental results.
科研通智能强力驱动
Strongly Powered by AbleSci AI