亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oxygen contribution to phenolic evolution during aging of red wines

葡萄酒 化学 食品科学 氧气 艺术 葡萄酒的陈酿
作者
Luigi Picariello
标识
DOI:10.6093/unina/fedoa/11626
摘要

Abstract Red wine aging is essentially an oxidative process mainly regulated by wine phenolic composition and storage conditions. Wines contain hydroquinones such as catechol derivatives that undergo redox reactions, reducing oxygen to hydrogen peroxide. These reaction are catalized by metals. Iron(II) species present react with hydrogen peroxide to form hydroxyl radicals in the Fenton reaction. These radicals can then react with alcohols to form aldehydes. Because ethanol is the predominant alcohol present in wine, acetaldehyde is the major product of this reaction. Acetaldehyde and other oxidation by-products activate a great series of reactions changing wine quality. Generally, a slow oxygenation improves quality of red wines, while an excessive oxidation causes a dramatic quality loss. Red wine phenolics, by trigging and driving oxidative reactions, strongly affect the outcome of wine oxidation and the acetaldehyde production. Although numerous studies deal on wine oxidation the role of initial wine phenolic composition on the outcome of oxidation is still not known. Apart polyphenols (e.g. anthocyanins, proanthocyanidins and pH,) also exogenous factors such as sulfur dioxide, hydrolysable tannins and glutathione worth investigation for the important implication for red wine quality and longevity. In this PhD thesis four studies were made to contribute to deep knowledge on wine oxidation chemistry. The first study provides clear evidence for a connection between anthocyanin/tannin ratio of red wine and the effect of oxygenation. Contact between wine and oxygen influences wine quality and the results obtained in this study highlight that, when dealing with wine rich in anthocyanins, the lower the anthocyanin/tannin ratio, the higher the positive effect of oxidation. Different anthocyanin tannin ratios during an oxidative process affects the copigmentation reaction causing a shift towards higher intensities (hyperchromic effect). In particular, the increase in polymeric pigments resistant to SO2 discoloration during oxidation is enhanced lowering the anthocyanin/tannin ratio. Tannin compounds have a similar behavior with oxidation: the three wines showed a decrease in VRF (monomers dimers and trimers) and an increase in BSA reactive tannins indicating a possible increase of the degree of polymerization. The higher the quantity of tannins added in wines, the lower the acetaldehyde produced by Fenton reaction. This is the first time that a strong link between the formation of acetaldehyde and the anthocyanins/tannins ratio in red wine has been observed. Further studies are still required to advance knowledge in the use of different tannins to improve wine characteristics during practices such as micro and nano-oxygenation. Starting from results obtained in the first study, a successive experiment was carried out aimed to evaluate the effect of the addition of grape tannins and hydrolysable tannins (gallic and ellagic tannins) of wood origin. All enological tannins preparations used increased the level polymeric pigments in wine at the end of the treatment. Among them, ellagitannins increased drastically the production of polymeric pigments already during the first phases of oxidative stress improving the stability of the color of the wine and causing a shift towards higher intensities (hyperchromic effect). During first phases of oxidation tannins reactive towards BSA increase for all wines, suggesting that during oxidation the high reactive tannins are involved in numerous condensation reactions. Acetaldehyde was quickly produced by Fenton reaction and, interestingly, all exogenous tannins determine a greater production of this highly reactive compound. For all wines analyzed a dramatic consumption of acetaldehyde was observed. These results confirm the key role of acetaldehyde in wine oxidation as trigger compound for reactions of stabilization of colour and condensation of tannins. In a third experiment the protective effect of sulfur dioxide and glutathione GSH on malvidin 3-monoglucoside degradation was evaluated. The use of GSH alone determined an increase in the degradation of malvidin 3-monoglucoside regardless of pH in model solution and in real wine. Results obtained in this study showed that the possibility to use GSH to prevent anthocyanins oxidation is not linked to its capability to quench hydrogen peroxide but only, in the first steps of oxidation, to act on quinones chemistry and limit the reduction of oxygen to hydrogen peroxide. When in wine is present hydrogen peroxide GSH is not able to scavenge it and contrast Fenton reaction nor alone and not in combination with SO2 at concentration usually proposed during winemaking. Taking into account these results and a recent study showing no protective activity of GSH to prevent white wines oxidation after one year of aging in bottles (Panero, et al., 2015), the use of this tripeptide as an alternative to SO2 has to be revised and the chemistry of action of this compounds in wine conditions better understood. The last experiment was performed applying a controlled nano-oxygenation to three monovarietal wines Aglianico (AGL), Casavecchia (CAS) and Pallagrello (PALL) very rich in tannins. In this work a general trend for polyphenols evolution during aging has been observed and it resulted into the loss of native anthocyanins, the formation of small and large polymeric pigments and the decrease in reactivity of tannins towards salivary proteins. The oxygen transmission rate (OTR) of closures can influence this trend but in different entity for the three wines considered. AGL wines resulted more affected by oxygen uptake than PALL and CAS ones. Because AGL wines showed lower SO2 protection and total phenolic content, these results underline that with low phenolic content a wine is more susceptible to oxidation and needs a special care on oxygen management. Wines differed for total anthocyanins content more than for total tannins content and AGL showed a anthocyanin/tannin ratio almost 3 times higher than CAS and PALL. This consideration and results obtained after 15 months of bottle aging suggest that the ratio between these two classes of compounds may have an important part on wine evolution. Further study can help to elucidate the role played by each phenolic class during NOx. The effect of OTR on sensory profiles of wines was more relevant than on polyphenols because for all wines, the closure with the highest oxygen ingress determined a higher intensity of red fruit notes. For CAS and PALL an antagonist effect between fruity notes and reduction ones was also observed and OTR of closure strongly affect this balance shifting wines towards reduction off-odours, especially with the lowest oxygen ingress. These data indicate that the selection of a closure that allows only specified amounts of oxygen into the wine over time is a useful tool to improve red wine quality taking into account its expected lifetime in bottle. All these results highlights the importance of anthocyanin/tannin ratio and of phenolic composition for the oxygen tolerance of a wine. Further studies should be aimed to find the relationship between the phenolic compounds variations, the acetaldehyde production and the formation of odorous volatiles compounds linked to oxidative spoilage of wine. With all these information a method to evaluate wine oxygen tolerance and to better manage wine shelf-life could be pointed out. During wine production and aging, the evaluation of acetaldehyde as well as the analysis and the use of SO2 resulted really critical and should be routinely monitored. GSH is instead not good to prevent Fenton reaction but only to its nucleophilic reaction with quinones. At this regard, the application of MOx in the post-fermentatives phase should be performed with low levels of SO2. Only when the desired stabilization is reached the wines should be properly preserved from further oxidation using SO2 and taking into account the level of acetaldehyde in wines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
trophozoite完成签到 ,获得积分10
2秒前
颢懿完成签到 ,获得积分10
4秒前
12秒前
儒雅友菱发布了新的文献求助30
16秒前
25秒前
26秒前
科研通AI6应助小啵采纳,获得10
29秒前
38秒前
47秒前
Wuyt应助小啵采纳,获得10
52秒前
DeXu发布了新的文献求助10
53秒前
54秒前
Ava应助王意博采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
柯语雪完成签到,获得积分10
1分钟前
搜集达人应助DeXu采纳,获得10
1分钟前
zyy完成签到,获得积分10
1分钟前
1分钟前
雪白小丸子完成签到,获得积分10
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
wuda完成签到,获得积分10
1分钟前
Funnymudpee完成签到,获得积分10
1分钟前
211JZH完成签到 ,获得积分10
2分钟前
西蓝花战士完成签到 ,获得积分10
2分钟前
mkst发布了新的文献求助10
2分钟前
852应助Chanlewu采纳,获得30
2分钟前
2分钟前
YJT发布了新的文献求助10
2分钟前
2分钟前
王意博发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522648
求助须知:如何正确求助?哪些是违规求助? 4613539
关于积分的说明 14539027
捐赠科研通 4551262
什么是DOI,文献DOI怎么找? 2494124
邀请新用户注册赠送积分活动 1475098
关于科研通互助平台的介绍 1446489