接口
脑-机接口
支持向量机
解码方法
脑电图
计算机科学
模式识别(心理学)
人工智能
语音识别
分类器(UML)
特征选择
二元分类
特征(语言学)
神经科学
心理学
算法
语言学
哲学
计算机硬件
作者
Ahmed Youssef Ali Amer,Benjamin Wittevrongel,Marc M. Van Hulle
出处
期刊:Sensors
[MDPI AG]
日期:2018-03-06
卷期号:18 (3): 794-794
被引量:8
摘要
Four novel EEG signal features for discriminating phase-coded steady-state visual evoked potentials (SSVEPs) are presented, and their performance in view of target selection in an SSVEP-based brain-computer interfacing (BCI) is assessed. The novel features are based on phase estimation and correlations between target responses. The targets are decoded from the feature scores using the least squares support vector machine (LS-SVM) classifier, and it is shown that some of the proposed features compete with state-of-the-art classifiers when using short (0.5 s) EEG recordings in a binary classification setting.
科研通智能强力驱动
Strongly Powered by AbleSci AI