内科学
内分泌学
牛磺去氧胆酸
胰岛素抵抗
葡萄糖稳态
脂肪组织
胰岛素
脂肪变性
糖耐量试验
医学
生物
未折叠蛋白反应
细胞凋亡
生物化学
作者
Thiago R. Araújo,Mariana Roberta Rodrigues Muniz,Bruna Lourençoni Alves,Lohanna Monali Barreto dos Santos,Maressa Fernandes Bonfim,Joel Alves da Silva,Jean Franciesco Vettorazzi,Cláudio C. Zoppi,Everardo M. Carneiro
标识
DOI:10.1016/j.foodres.2022.111331
摘要
Early childhood malnutrition may facilitate the onset of obesity and diabetes mellitus in adulthood which, when established, makes it more resistant to therapeutic interventions. The beneficial effects of tauroursodeoxycholic acid (TUDCA) in glucose homeostasis and body fat accumulation were analyzed in protein-restricted mice fed a high-fat diet (HFD). C57BL/6 mice were fed a control (14% protein [C]) or a protein-restricted (6% protein [R]) diet for 6 weeks. Afterward, mice received an HFD or not for 12 weeks (C mice fed an HFD [CH] and R mice fed an HFD [RH]). In the last 15 days of this period, half of the mice fed a HFD received i.p. PBS (groups CH and RH) or 300 mg/kg TUDCA (groups CHT and RHT). RH mice developed obesity, as demonstrated by the increase in fat accumulation, liver steatosis, and metabolic inflexibility. Additionally, showed glucose intolerance and insulin hypersecretion. TUDCA reduced adiposity and improve metabolic flexibility through increased HSL phosphorylation and CPT1 expression in eWAT and BAT, and reduced ectopic fat deposition by activating the AMPK/HSL pathway in the liver. Also, improved glucose tolerance and insulin sensitivity, normalizing insulin secretion by reducing GDH expression and increasing insulin peripheral sensitivity by greater expression of the IRβ in muscle and adipose tissue and reducing PEPCK liver expression. Our data indicate that TUDCA reduces global adiposity and improves glucose tolerance and insulin sensitivity in protein malnourished mice fed a HFD. Therefore, this is a possible strategy to reverse metabolic disorders in individuals with the double burden of malnutrition.
科研通智能强力驱动
Strongly Powered by AbleSci AI