Cross-comparative metabolomics reveal sex-age specific metabolic fingerprints and metabolic interactions in acute myocardial infarction

代谢组学 生物标志物 医学 生物标志物发现 疾病 心肌梗塞 生物信息学 内科学 生物 蛋白质组学 生物化学 基因
作者
Wuping Liu,Lirong Zhang,Xiulin Shi,Guiping Shen,Jianghua Feng
出处
期刊:Free Radical Biology and Medicine [Elsevier BV]
卷期号:183: 25-34 被引量:10
标识
DOI:10.1016/j.freeradbiomed.2022.03.008
摘要

The elucidation of metabolic perturbations and gender-age-specific metabolic characteristics associated with acute myocardial infarction (AMI) is essential for clinical risk stratification and disease management. A comprehensive cross-comparative metabolomics analysis was performed on the sera from 445 healthy controls, 347 AMI patients without cardiovascular disease (CVD), 79 AMI with CVD (AMICVD) patients including 27 deaths. Machine-learning-based integrated biomarker profiling and global network analysis were used to create a multi-biomarker for distinguishing the different AMI outcomes. The changes of most metabolites were dependent on AMI, but gender and age also give additional contributions to the changes of histidine, malonate, O-acetyl-glycoprotein and trimethylamine N-oxide. The altered metabolic pathways included gut dysbiosis, increased amino acid metabolism, glucose metabolism and ketone metabolism, and inactivation of tricarboxylic acid cycle. Enhanced histidine metabolism and microbiota dysbiosis may be one of the key factors during the developing of AMI into AMICVD. For the differential diagnosis of AMI events, three sets of specific multi-biomarkers provided relatively high accuracy with the areas under the curve more than 0.8 and hazard ratio more than 1 in the discovery set, and the results were reproduced and confirmed by the validation set. First use of cross-comparative metabolomics and machine-learning-based integrated biomarker analysis gives great capability to discriminate the different AMI outcomes. Also, the multi-biomarkers seem to be a valid and accurate auxiliary diagnosis biomarker in addition to standard stratification based on clinical parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的枫叶完成签到 ,获得积分10
1秒前
zyzraylene发布了新的文献求助50
1秒前
852应助好事朵朵开采纳,获得10
2秒前
2秒前
思源应助yeggoo采纳,获得10
2秒前
嘟啦发布了新的文献求助10
2秒前
有趣的银发布了新的文献求助10
2秒前
刘琪琪完成签到 ,获得积分20
3秒前
理想三寻发布了新的文献求助10
3秒前
一个西瓜完成签到 ,获得积分10
3秒前
4秒前
思源应助停停走走采纳,获得10
4秒前
kavins凯旋发布了新的文献求助10
5秒前
5秒前
777完成签到,获得积分10
6秒前
万能图书馆应助YYY采纳,获得30
6秒前
fjy完成签到,获得积分20
7秒前
7秒前
7秒前
111111111发布了新的文献求助10
8秒前
蔺阁发布了新的文献求助10
8秒前
无花果应助郭伟康采纳,获得30
9秒前
研友_VZG7GZ应助hewd3采纳,获得10
9秒前
9秒前
沉默的西牛完成签到,获得积分10
9秒前
科研通AI6应助楠小秾采纳,获得10
10秒前
无辜茗完成签到 ,获得积分10
10秒前
11秒前
11秒前
受伤翼发布了新的文献求助10
12秒前
Ankh应助carly采纳,获得10
12秒前
小马甲应助大哥我猪呢采纳,获得10
13秒前
JMWM发布了新的文献求助30
13秒前
科研通AI2S应助唠叨的又菡采纳,获得10
16秒前
zc完成签到,获得积分10
16秒前
16秒前
隐形曼青应助蔺阁采纳,获得10
17秒前
真龙狂婿完成签到,获得积分10
17秒前
没心没肺发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969390
求助须知:如何正确求助?哪些是违规求助? 4226439
关于积分的说明 13162922
捐赠科研通 4013920
什么是DOI,文献DOI怎么找? 2196363
邀请新用户注册赠送积分活动 1209607
关于科研通互助平台的介绍 1123732