Cross-comparative metabolomics reveal sex-age specific metabolic fingerprints and metabolic interactions in acute myocardial infarction

代谢组学 生物标志物 医学 生物标志物发现 疾病 心肌梗塞 生物信息学 内科学 生物 蛋白质组学 生物化学 基因
作者
Wuping Liu,Lirong Zhang,Xiulin Shi,Guiping Shen,Jianghua Feng
出处
期刊:Free Radical Biology and Medicine [Elsevier]
卷期号:183: 25-34 被引量:6
标识
DOI:10.1016/j.freeradbiomed.2022.03.008
摘要

The elucidation of metabolic perturbations and gender-age-specific metabolic characteristics associated with acute myocardial infarction (AMI) is essential for clinical risk stratification and disease management. A comprehensive cross-comparative metabolomics analysis was performed on the sera from 445 healthy controls, 347 AMI patients without cardiovascular disease (CVD), 79 AMI with CVD (AMICVD) patients including 27 deaths. Machine-learning-based integrated biomarker profiling and global network analysis were used to create a multi-biomarker for distinguishing the different AMI outcomes. The changes of most metabolites were dependent on AMI, but gender and age also give additional contributions to the changes of histidine, malonate, O-acetyl-glycoprotein and trimethylamine N-oxide. The altered metabolic pathways included gut dysbiosis, increased amino acid metabolism, glucose metabolism and ketone metabolism, and inactivation of tricarboxylic acid cycle. Enhanced histidine metabolism and microbiota dysbiosis may be one of the key factors during the developing of AMI into AMICVD. For the differential diagnosis of AMI events, three sets of specific multi-biomarkers provided relatively high accuracy with the areas under the curve more than 0.8 and hazard ratio more than 1 in the discovery set, and the results were reproduced and confirmed by the validation set. First use of cross-comparative metabolomics and machine-learning-based integrated biomarker analysis gives great capability to discriminate the different AMI outcomes. Also, the multi-biomarkers seem to be a valid and accurate auxiliary diagnosis biomarker in addition to standard stratification based on clinical parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可问春风完成签到,获得积分10
刚刚
right完成签到 ,获得积分10
1秒前
3秒前
Gigi发布了新的文献求助10
3秒前
周应发布了新的文献求助10
4秒前
6秒前
wanci应助小许小许采纳,获得10
7秒前
研友_Z7WGlZ发布了新的文献求助10
9秒前
我是老大应助micomico采纳,获得10
9秒前
wanci应助Gigi采纳,获得10
11秒前
11秒前
mm完成签到,获得积分20
14秒前
16秒前
大有阳光应助Roypeng采纳,获得10
17秒前
zmmmm发布了新的文献求助30
17秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
19秒前
完美世界应助科研通管家采纳,获得30
19秒前
Orange应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助研友_Z7WGlZ采纳,获得10
20秒前
Wink完成签到,获得积分10
20秒前
21秒前
科研通AI2S应助gan采纳,获得10
21秒前
无奈应助gan采纳,获得10
21秒前
852应助gan采纳,获得10
21秒前
Nicole完成签到 ,获得积分10
22秒前
22秒前
23秒前
24秒前
情怀应助小布可嘁采纳,获得10
25秒前
Yhcir发布了新的文献求助20
26秒前
beplayer1完成签到 ,获得积分10
27秒前
Gigi完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164130
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906891
捐赠科研通 2474467
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228