Cross-comparative metabolomics reveal sex-age specific metabolic fingerprints and metabolic interactions in acute myocardial infarction

代谢组学 生物标志物 医学 生物标志物发现 疾病 心肌梗塞 生物信息学 内科学 生物 蛋白质组学 生物化学 基因
作者
Wuping Liu,Lirong Zhang,Xiulin Shi,Guiping Shen,Jianghua Feng
出处
期刊:Free Radical Biology and Medicine [Elsevier BV]
卷期号:183: 25-34 被引量:10
标识
DOI:10.1016/j.freeradbiomed.2022.03.008
摘要

The elucidation of metabolic perturbations and gender-age-specific metabolic characteristics associated with acute myocardial infarction (AMI) is essential for clinical risk stratification and disease management. A comprehensive cross-comparative metabolomics analysis was performed on the sera from 445 healthy controls, 347 AMI patients without cardiovascular disease (CVD), 79 AMI with CVD (AMICVD) patients including 27 deaths. Machine-learning-based integrated biomarker profiling and global network analysis were used to create a multi-biomarker for distinguishing the different AMI outcomes. The changes of most metabolites were dependent on AMI, but gender and age also give additional contributions to the changes of histidine, malonate, O-acetyl-glycoprotein and trimethylamine N-oxide. The altered metabolic pathways included gut dysbiosis, increased amino acid metabolism, glucose metabolism and ketone metabolism, and inactivation of tricarboxylic acid cycle. Enhanced histidine metabolism and microbiota dysbiosis may be one of the key factors during the developing of AMI into AMICVD. For the differential diagnosis of AMI events, three sets of specific multi-biomarkers provided relatively high accuracy with the areas under the curve more than 0.8 and hazard ratio more than 1 in the discovery set, and the results were reproduced and confirmed by the validation set. First use of cross-comparative metabolomics and machine-learning-based integrated biomarker analysis gives great capability to discriminate the different AMI outcomes. Also, the multi-biomarkers seem to be a valid and accurate auxiliary diagnosis biomarker in addition to standard stratification based on clinical parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助雪落的声音采纳,获得10
刚刚
bubble嘞完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
无糖加冰完成签到,获得积分10
1秒前
Oct_Y完成签到,获得积分10
2秒前
shen发布了新的文献求助10
2秒前
若安在完成签到,获得积分10
2秒前
波波完成签到 ,获得积分10
2秒前
MrCoolWu完成签到,获得积分10
2秒前
修辛完成签到 ,获得积分10
3秒前
RLV完成签到,获得积分10
3秒前
SUIRIGO完成签到,获得积分10
3秒前
一水独流完成签到,获得积分10
3秒前
小李给我支棱起来完成签到,获得积分10
4秒前
plumcute完成签到,获得积分10
4秒前
齐志雄发布了新的文献求助10
4秒前
十一完成签到,获得积分10
5秒前
小太阳红红火火完成签到,获得积分10
5秒前
科研狗完成签到,获得积分10
6秒前
hfut_lee完成签到,获得积分10
6秒前
6秒前
陈亚茹完成签到,获得积分10
6秒前
sdjjis完成签到 ,获得积分10
7秒前
Skywalker发布了新的文献求助10
7秒前
rr发布了新的文献求助10
7秒前
7秒前
呆萌刺猬完成签到 ,获得积分10
7秒前
宋芝恬完成签到,获得积分10
8秒前
悦耳凝丹完成签到,获得积分10
8秒前
又胖了完成签到,获得积分10
8秒前
8秒前
时尚饼干发布了新的文献求助10
8秒前
桃七七完成签到,获得积分10
8秒前
夏天就是桃子味完成签到,获得积分10
9秒前
研友_nPb9e8完成签到,获得积分10
9秒前
F123456完成签到,获得积分10
10秒前
ls应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
斯文败类应助汪强采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597902
求助须知:如何正确求助?哪些是违规求助? 4009316
关于积分的说明 12410427
捐赠科研通 3688598
什么是DOI,文献DOI怎么找? 2033325
邀请新用户注册赠送积分活动 1066591
科研通“疑难数据库(出版商)”最低求助积分说明 951742