Adaptive dictionary and structure learning for unsupervised feature selection

计算机科学 特征选择 人工智能 无监督学习 冗余(工程) 机器学习 特征(语言学) 模式识别(心理学) 特征学习 半监督学习 语言学 操作系统 哲学
作者
Yanrong Guo,Huihui Sun,Shijie Hao
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102931-102931 被引量:6
标识
DOI:10.1016/j.ipm.2022.102931
摘要

Unsupervised feature selection is very attractive in many practical applications, as it needs no semantic labels during the learning process. However, the absence of semantic labels makes the unsupervised feature selection more challenging, as the method can be affected by the noise, redundancy, or missing in the originally extracted features. Currently, most methods either consider the influence of noise for sparse learning or think over the internal structure information of the data, leading to suboptimal results. To relieve these limitations and improve the effectiveness of unsupervised feature selection, we propose a novel method named Adaptive Dictionary and Structure Learning (ADSL) that conducts spectral learning and sparse dictionary learning in a unified framework. Specifically, we adaptively update the dictionary based on sparse dictionary learning. And, we also introduce the spectral learning method of adaptive updating affinity matrix. While removing redundant features, the intrinsic structure of the original data can be retained. In addition, we adopt matrix completion in our framework to make it competent for fixing the missing data problem. We validate the effectiveness of our method on several public datasets. Experimental results show that our model not only outperforms some state-of-the-art methods on complete datasets but also achieves satisfying results on incomplete datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战神小新完成签到,获得积分10
刚刚
裴向雪完成签到,获得积分10
刚刚
1秒前
绝不熬夜到2点完成签到,获得积分10
1秒前
Jasper应助彬琪采纳,获得10
2秒前
3秒前
英俊的铭应助夏天采纳,获得10
4秒前
tt666发布了新的文献求助10
4秒前
666发布了新的文献求助10
4秒前
4秒前
鸣笛应助pwj采纳,获得50
4秒前
Asuna发布了新的文献求助10
5秒前
6秒前
7秒前
Rwo完成签到,获得积分10
7秒前
8秒前
emma发布了新的文献求助30
8秒前
huluobo发布了新的文献求助10
12秒前
齐天大圣应助felix采纳,获得30
13秒前
irisjlj发布了新的文献求助10
13秒前
666完成签到,获得积分20
13秒前
思源应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
Rondab应助Victoria采纳,获得10
18秒前
18秒前
Jancy完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533689
关于积分的说明 11263515
捐赠科研通 3273441
什么是DOI,文献DOI怎么找? 1806049
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629