TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers

计算机科学 人工智能 计算机视觉 稳健性(进化) 激光雷达 初始化 目标检测 融合机制 模式识别(心理学) 融合 遥感 地理 生物化学 化学 语言学 哲学 脂质双层融合 基因 程序设计语言
作者
Xuyang Bai,Zeyu Hu,Xinge Zhu,Qingqiu Huang,Yilun Chen,Hengzhi Fu,Chiew-Lan Tai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.11496
摘要

LiDAR and camera are two important sensors for 3D object detection in autonomous driving. Despite the increasing popularity of sensor fusion in this field, the robustness against inferior image conditions, e.g., bad illumination and sensor misalignment, is under-explored. Existing fusion methods are easily affected by such conditions, mainly due to a hard association of LiDAR points and image pixels, established by calibration matrices. We propose TransFusion, a robust solution to LiDAR-camera fusion with a soft-association mechanism to handle inferior image conditions. Specifically, our TransFusion consists of convolutional backbones and a detection head based on a transformer decoder. The first layer of the decoder predicts initial bounding boxes from a LiDAR point cloud using a sparse set of object queries, and its second decoder layer adaptively fuses the object queries with useful image features, leveraging both spatial and contextual relationships. The attention mechanism of the transformer enables our model to adaptively determine where and what information should be taken from the image, leading to a robust and effective fusion strategy. We additionally design an image-guided query initialization strategy to deal with objects that are difficult to detect in point clouds. TransFusion achieves state-of-the-art performance on large-scale datasets. We provide extensive experiments to demonstrate its robustness against degenerated image quality and calibration errors. We also extend the proposed method to the 3D tracking task and achieve the 1st place in the leaderboard of nuScenes tracking, showing its effectiveness and generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小聂完成签到,获得积分10
刚刚
dongdongqiang完成签到,获得积分10
刚刚
Zll完成签到,获得积分10
刚刚
Thunnus001完成签到,获得积分10
1秒前
SYX完成签到,获得积分10
1秒前
1秒前
深情安青应助dang_采纳,获得10
1秒前
堇妗完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
呆萌滑板完成签到 ,获得积分10
2秒前
漂亮妙柏完成签到,获得积分10
3秒前
ican发布了新的文献求助10
3秒前
3秒前
领导范儿应助无语的冷卉采纳,获得10
4秒前
雨小科完成签到 ,获得积分10
5秒前
yalan完成签到,获得积分10
5秒前
陳十一发布了新的文献求助10
5秒前
幽默泥猴桃完成签到,获得积分10
5秒前
淡然乌完成签到,获得积分10
6秒前
QQ完成签到 ,获得积分10
6秒前
左丘傲菡发布了新的文献求助10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Cloud应助科研通管家采纳,获得20
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
whatever应助科研通管家采纳,获得10
7秒前
柑橘应助科研通管家采纳,获得10
7秒前
yufanhui应助科研通管家采纳,获得30
7秒前
Cloud应助科研通管家采纳,获得20
7秒前
科研岗完成签到,获得积分10
7秒前
yufanhui应助科研通管家采纳,获得30
7秒前
Cloud应助科研通管家采纳,获得20
7秒前
7秒前
无限太阳完成签到,获得积分20
8秒前
winky发布了新的文献求助10
8秒前
高高笑白发布了新的文献求助10
9秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151089
求助须知:如何正确求助?哪些是违规求助? 2802543
关于积分的说明 7848537
捐赠科研通 2459877
什么是DOI,文献DOI怎么找? 1309380
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757