TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers

计算机科学 人工智能 计算机视觉 稳健性(进化) 激光雷达 初始化 目标检测 融合机制 模式识别(心理学) 融合 遥感 地理 生物化学 化学 语言学 哲学 脂质双层融合 基因 程序设计语言
作者
Xuyang Bai,Zeyu Hu,Xinge Zhu,Qingqiu Huang,Yilun Chen,Hengzhi Fu,Chiew-Lan Tai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.11496
摘要

LiDAR and camera are two important sensors for 3D object detection in autonomous driving. Despite the increasing popularity of sensor fusion in this field, the robustness against inferior image conditions, e.g., bad illumination and sensor misalignment, is under-explored. Existing fusion methods are easily affected by such conditions, mainly due to a hard association of LiDAR points and image pixels, established by calibration matrices. We propose TransFusion, a robust solution to LiDAR-camera fusion with a soft-association mechanism to handle inferior image conditions. Specifically, our TransFusion consists of convolutional backbones and a detection head based on a transformer decoder. The first layer of the decoder predicts initial bounding boxes from a LiDAR point cloud using a sparse set of object queries, and its second decoder layer adaptively fuses the object queries with useful image features, leveraging both spatial and contextual relationships. The attention mechanism of the transformer enables our model to adaptively determine where and what information should be taken from the image, leading to a robust and effective fusion strategy. We additionally design an image-guided query initialization strategy to deal with objects that are difficult to detect in point clouds. TransFusion achieves state-of-the-art performance on large-scale datasets. We provide extensive experiments to demonstrate its robustness against degenerated image quality and calibration errors. We also extend the proposed method to the 3D tracking task and achieve the 1st place in the leaderboard of nuScenes tracking, showing its effectiveness and generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
2秒前
吹泡泡的红豆完成签到 ,获得积分10
3秒前
研友_89eBO8完成签到 ,获得积分10
3秒前
隐形曼青应助ZeJ采纳,获得10
3秒前
3秒前
隐形曼青应助温暖的钻石采纳,获得10
4秒前
Khr1stINK发布了新的文献求助10
5秒前
123cxj发布了新的文献求助10
6秒前
星辰大海应助红红采纳,获得10
6秒前
sweetbearm应助小周采纳,获得10
7秒前
科研通AI5应助赖道之采纳,获得10
7秒前
8秒前
HonamC完成签到,获得积分10
9秒前
十三十四十五完成签到,获得积分10
10秒前
潇洒的问夏完成签到 ,获得积分10
12秒前
无声瀑布完成签到,获得积分10
12秒前
Bingtao_Lian完成签到 ,获得积分10
13秒前
小布丁完成签到 ,获得积分10
13秒前
竹筏过海应助季生采纳,获得30
14秒前
15秒前
buno应助22采纳,获得10
16秒前
赘婿应助TT采纳,获得10
17秒前
17秒前
17秒前
18秒前
Jenny应助赖道之采纳,获得10
20秒前
依古比古完成签到 ,获得积分10
22秒前
汎影发布了新的文献求助10
22秒前
小二完成签到,获得积分10
22秒前
23秒前
25秒前
顾矜应助长情洙采纳,获得10
25秒前
monere发布了新的文献求助30
25秒前
Xiaoxiao应助汉关采纳,获得10
27秒前
27秒前
汎影完成签到,获得积分10
28秒前
29秒前
Chen发布了新的文献求助10
31秒前
WW完成签到,获得积分10
31秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808