MPTP公司
线粒体生物发生
氧化应激
炎症
内分泌学
过氧化物酶体增殖物激活受体
神经保护
内科学
兴奋剂
药理学
激活剂(遗传学)
帕金森病
医学
化学
受体
线粒体
生物化学
疾病
作者
Nihar Ranjan Das,Bhupesh Vaidya,Pragyanshu Khare,Mahendra Bishnoi,Shyam Sunder Sharma
标识
DOI:10.2174/1567202619666211217140954
摘要
PPAR gamma co-activator 1α (PGC-1α) is known as the master regulator of mitochondrial biogenesis. It is also a co-activator of peroxisome proliferator-activated receptor-gamma (PPARγ) and plays a role in preventing mitochondrial dysfunction in several neurodegenerative disorders, including Parkinson's disease (PD). Depletion in the levels of these proteins has been linked to oxidative stress, inflammation, and DNA damage, all of which are known to contribute to the pathogenesis of PD.In the present study, combination therapy of PPARγ agonist (GW1929) and PGC-1α activator (alpha-lipoic acid) was employed to ameliorate cognitive deficits, oxidative stress, and inflammation associated with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD.PD was induced using a bilateral intranigral administration of MPTP in Sprague Dawley rats, and different parameters were evaluated.Our study showed that MPTP-induced PD rats exhibited an increase in oxidative stress and inflammation, leading to cognitive deficits. Furthermore, MPTP-induced PD rats also exhibited reduced mitochondrial biogenesis in comparison to control and sham animals. Intraperitoneal administration of GW 1929 and alpha-lipoic acid in doses lower than those earlier reported individually in literature led to an improvement in the cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and inflammation. In addition, an increase in mitochondrial biogenesis was also observed after the combination of these pharmacological agents.Our results provide a rationale for the development of agents targeting PPARγ and PGC-1α as potent therapeutics for the treatment of neurological diseases like PD.
科研通智能强力驱动
Strongly Powered by AbleSci AI