Deep learning model for imbalanced multi-label surface defect classification

计算机科学 人工智能 钥匙(锁) 深度学习 机器学习 延迟(音频) 学习迁移 模式识别(心理学) 计算机安全 电信
作者
Yang Liu,Yachao Yuan,Jing Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (3): 035601-035601 被引量:11
标识
DOI:10.1088/1361-6501/ac41a6
摘要

Abstract Automatic defect classification is vital to ensure product quality, especially for steel production. In the real world, the amount of collected samples with labels is limited due to high labor costs, and the gathered dataset is usually imbalanced, making accurate steel defect classification very challenging. In this paper, a novel deep learning model for imbalanced multi-label surface defect classification, named ImDeep, is proposed. It can be deployed easily in steel production lines to identify different defect types on the steel’s surface. ImDeep incorporates three key techniques, i.e. Imbalanced Sampler, Fussy-FusionNet, and Transfer Learning. It improves the model’s classification performance with multi-label and reduces the model’s complexity over small datasets with low latency. The performance of different fusion strategies and three key techniques of ImDeep is verified. Simulation results prove that ImDeep accomplishes better performance than the state-of-the-art over the public dataset with varied sizes. Specifically, ImDeep achieves about 97% accuracy of steel surface defect classification over a small imbalanced dataset with a low latency, which improves about 10% compared with that of the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废寝忘食发布了新的文献求助20
1秒前
1秒前
祖安诳人完成签到,获得积分10
1秒前
hhhh完成签到,获得积分20
2秒前
吕曼完成签到,获得积分10
2秒前
2秒前
3秒前
Wri发布了新的文献求助10
3秒前
领导范儿应助初心采纳,获得10
3秒前
甜甜完成签到 ,获得积分10
3秒前
3秒前
SciGPT应助曹曹采纳,获得10
3秒前
嘴角微微仰起笑应助丽莉采纳,获得10
4秒前
4秒前
4秒前
4秒前
大模型应助茂茂采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
深情怀亦发布了新的文献求助10
7秒前
Zx_1993应助peng采纳,获得10
7秒前
7秒前
jxm发布了新的文献求助10
7秒前
7秒前
宛筠完成签到,获得积分10
8秒前
Harry应助shtatbf采纳,获得10
8秒前
ssss发布了新的文献求助10
8秒前
ding应助土土b采纳,获得10
8秒前
lilili完成签到,获得积分10
9秒前
pshhhz1994完成签到,获得积分10
9秒前
火星上兰完成签到,获得积分10
9秒前
9秒前
lmd发布了新的文献求助10
9秒前
海绵宝宝完成签到,获得积分10
9秒前
张先生发布了新的文献求助10
9秒前
10秒前
传奇3应助柴犬采纳,获得10
10秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957