医学
脊髓损伤
脊髓
重编程
神经科学
再生(生物学)
神经营养因子
中枢神经系统
神经突
诱导多能干细胞
标识
DOI:10.4103/1673-5374.330590
摘要
Spinal cord injury represents a devastating central nervous system injury that could impair the mobility and sensory function of afflicted patients. The hallmarks of spinal cord injury include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Furthermore, the formation of a glial scar at the injury site elicits an inhibitory environment for potential neuroregeneration. Besides axonal regeneration, a significant challenge in treating spinal cord injury is to replenish the neurons lost during the pathological process. However, despite decades of research efforts, current strategies including stem cell transplantation have not resulted in a successful clinical therapy. Furthermore, stem cell transplantation faces serious hurdles such as immunorejection of the transplanted cells and ethical issues. In vivo neuronal reprogramming is a recently developed technology and leading a major breakthrough in regenerative medicine. This innovative technology converts endogenous glial cells into functional neurons for injury repair in the central nervous system. The feasibility of in vivo neuronal reprogramming has been demonstrated successfully in models of different neurological disorders including spinal cord injury by numerous laboratories. Several reprogramming factors, mainly the pro-neural transcription factors, have been utilized to reprogram endogenous glial cells into functional neurons with distinct phenotypes. So far, the literature on in vivo neuronal reprogramming in the model of spinal cord injury is still small. In this review, we summarize a limited number of such reports and discuss several questions that we think are important for applying in vivo neuronal reprogramming in the research field of spinal cord injury as well as other central nervous system disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI