反推
控制理论(社会学)
非线性系统
控制器(灌溉)
跟踪误差
有界函数
计算机科学
跟踪(教育)
边界(拓扑)
转化(遗传学)
自适应控制
人工神经网络
控制(管理)
数学
人工智能
生物
化学
数学分析
物理
基因
农学
量子力学
生物化学
教育学
心理学
作者
Xu Zhang,Jieqing Tan,Yangang Yao,Jian Wu
摘要
Summary This article concentrates upon the practical fixed‐time adaptive neural tracking control problem of non‐strict‐feedback nonlinear systems with input delay and prescribed boundary constraints (PBCs). A modified appropriate auxiliary system is introduced to eliminate the complex calculations appeared in the input delay. The unknown nonlinear functions exist in non‐strict‐feedback nonlinear systems, which are approximated by the radial basis function neural networks. The adaptive practical fixed‐time control strategy is developed based on a novel coordinate transformation by utilizing the backstepping algorithm. Under the proposed controller, it can be guaranteed that the tracking error satisfies the PBCs in fixed time and all the signals in the closed‐loop system are bounded. Some numerical simulations verify the effectiveness of the control approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI