Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging

高光谱成像 偏最小二乘回归 人工智能 计算机科学 模式识别(心理学) 支持向量机 深度学习 近红外光谱 数学 机器学习 物理 光学
作者
Min Xu,Jun Sun,Kunshan Yao,Qiang Cai,Jifeng Shen,Yan Tian,Xin Zhou
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:120: 104003-104003 被引量:32
标识
DOI:10.1016/j.infrared.2021.104003
摘要

Firmness and pH, the most important quality attributes of grapes, are directly associated with their quality and price. This study aimed to predict firmness and pH of Kyoho grape using hyperspectral imaging (HSI) via a deep learning approach. Stacked auto-encoders (SAE) were applied to extract deep spectral features based on the pixel-level spectra of each sample over the wavelength range of 400.68–1001.61 nm. Subsequently, these features were used as input data to construct deep learning models for assessing firmness and pH. Additionally, the successive projections algorithm and competitive adaptive reweighed sampling (as wavelength selection algorithms) as well as partial least squares (PLS) and least squares support vector machine (LSSVM) (as modeling approaches) were investigated as conventional spectra analysis approaches for comparison. The results showed that the SAE-LSSVM model achieved the optimal performance, with Rp2=0.9232, RMSEP=0.4422N, and RPD=3.26 for firmness, and the SAE-PLS model yielded satisfactory accuracy, with Rp2=0.9005, RMSEP=0.0781, and RPD=2.82 for pH. The overall results revealed that SAE could be used as an alternative to deal with high-dimensional hyperspectral image data. Combined with HSI, it could non-destructively and rapidly detect firmness and pH in grapes; this significantly facilitates post-harvest management and may provide a valuable reference for evaluating other internal quality attributes of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tomice发布了新的文献求助10
刚刚
ding应助能能鹤采纳,获得10
1秒前
enen发布了新的文献求助10
1秒前
周周发布了新的文献求助10
1秒前
所所应助听枫采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
香蕉觅云应助XUNGEER11采纳,获得10
2秒前
2秒前
扭扭车发布了新的文献求助10
2秒前
龙哥发布了新的文献求助10
3秒前
3秒前
洪亮完成签到,获得积分0
3秒前
4秒前
drfy123发布了新的文献求助10
4秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
5秒前
5秒前
Little2发布了新的文献求助10
6秒前
盛夏之末应助太阳吖采纳,获得10
6秒前
星辰大海应助mrmrer采纳,获得10
6秒前
hhh完成签到,获得积分20
7秒前
逸鑫林完成签到 ,获得积分10
8秒前
大模型应助mirayq采纳,获得10
8秒前
8秒前
Ava应助21采纳,获得10
9秒前
9秒前
执着谷兰发布了新的文献求助30
9秒前
苻慕梅完成签到,获得积分10
10秒前
可爱的函函应助drfy123采纳,获得10
11秒前
leopardymk发布了新的文献求助10
11秒前
大气沧海发布了新的文献求助10
11秒前
Zhang完成签到,获得积分10
11秒前
11秒前
zhangpeipei完成签到,获得积分10
12秒前
shirly完成签到,获得积分10
12秒前
Cherish发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
小全完成签到,获得积分10
15秒前
断水流小师弟完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199