Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging

高光谱成像 偏最小二乘回归 人工智能 计算机科学 模式识别(心理学) 支持向量机 深度学习 近红外光谱 数学 机器学习 物理 光学
作者
Min Xu,Jun Sun,Kunshan Yao,Qiang Cai,Jifeng Shen,Yan Tian,Xin Zhou
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:120: 104003-104003 被引量:32
标识
DOI:10.1016/j.infrared.2021.104003
摘要

Firmness and pH, the most important quality attributes of grapes, are directly associated with their quality and price. This study aimed to predict firmness and pH of Kyoho grape using hyperspectral imaging (HSI) via a deep learning approach. Stacked auto-encoders (SAE) were applied to extract deep spectral features based on the pixel-level spectra of each sample over the wavelength range of 400.68–1001.61 nm. Subsequently, these features were used as input data to construct deep learning models for assessing firmness and pH. Additionally, the successive projections algorithm and competitive adaptive reweighed sampling (as wavelength selection algorithms) as well as partial least squares (PLS) and least squares support vector machine (LSSVM) (as modeling approaches) were investigated as conventional spectra analysis approaches for comparison. The results showed that the SAE-LSSVM model achieved the optimal performance, with Rp2=0.9232, RMSEP=0.4422N, and RPD=3.26 for firmness, and the SAE-PLS model yielded satisfactory accuracy, with Rp2=0.9005, RMSEP=0.0781, and RPD=2.82 for pH. The overall results revealed that SAE could be used as an alternative to deal with high-dimensional hyperspectral image data. Combined with HSI, it could non-destructively and rapidly detect firmness and pH in grapes; this significantly facilitates post-harvest management and may provide a valuable reference for evaluating other internal quality attributes of fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
酶没美镁发布了新的文献求助10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
1秒前
nenenn完成签到,获得积分10
1秒前
落林樾完成签到 ,获得积分10
3秒前
3秒前
阿潇完成签到 ,获得积分10
3秒前
Moonlight完成签到 ,获得积分10
4秒前
小蘑菇应助seventonight2采纳,获得10
4秒前
岁月流年完成签到,获得积分10
5秒前
诚心太君完成签到,获得积分10
5秒前
6秒前
7秒前
xi完成签到 ,获得积分10
7秒前
科研通AI2S应助务实天德采纳,获得10
8秒前
NexusExplorer应助务实天德采纳,获得10
8秒前
上官若男应助gan采纳,获得10
10秒前
10秒前
小马到处跑完成签到,获得积分10
10秒前
夏天的小沐沐完成签到,获得积分10
11秒前
haizz完成签到,获得积分10
17秒前
18秒前
20秒前
逸群完成签到,获得积分10
21秒前
科研通AI2S应助nickel采纳,获得10
22秒前
qq完成签到,获得积分20
23秒前
!!发布了新的文献求助10
24秒前
24秒前
25秒前
29秒前
第七个太阳完成签到,获得积分10
29秒前
感动书文完成签到,获得积分10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388