内质网
肌球蛋白轻链激酶
细胞生物学
化学
磷酸化
生物化学
生物
作者
Luqing Song,Tao Wu,Li Zhang,Jin Wan,Zheng Ruan
出处
期刊:Food & Function
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:13 (8): 4562-4575
被引量:21
摘要
Phenolic acids play an active role in protecting the intestinal barrier, the structural integrity and function of which are crucial for host health. In the present study, we aimed to identify phenolic compounds that protect the intestine and explore the underlying mechanisms. We performed an imaging-based, quantitative, high-content screening (using Caco-2 and LS174T incubated with lipopolysaccharide/palmitic acid, respectively) to identify phenolic acids that could improve the mucosal barrier. We found that chlorogenic acid (CGA), 5-caffeoylquinic acid, protocatechuic acid, and caffeic acid alleviated intestinal barrier disruption. Furthermore, CGA increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. Mechanistically, CGA inhibited the activation of myosin light chain kinase (MLCK) and Rho-associated kinase 1 (ROCK1) signals, thereby downregulating the expression of the downstream molecules phosphorylated myosin phosphatase target subunit 1 (p-MYPT1), MLCK, and phosphorylated myosin light chain (p-MLC), and upregulating the expression of tight junction proteins. In addition, CGA alleviated endoplasmic reticulum (ER) stress by inhibiting the expression levels of ER markers [glucose-regulated protein78 (GRP78) and C/EBP homologous protein (CHOP)] and the nuclear translocation of activating transcription factor 6 (ATF6), thereby promoting the expression of mucin [mucin 2 (Muc2), mucin 5AC (MUC5AC)] and secretory factor trefoil factor family 3 (TFF3) proteins. In summary, we identified four substances that can stabilise intestinal homeostasis. Of these, CGA protects the intestinal barrier by inhibiting ROCK/MLCK signalling pathways and relieving ER stress. These findings highlight the importance of rapidly screening potential active ingredients that benefit the intestinal barrier and provide a theoretical basis for enteral nutrition.
科研通智能强力驱动
Strongly Powered by AbleSci AI