Context awareness in process monitoring of additive manufacturing using a digital twin

背景(考古学) 异常检测 过程(计算) 空间语境意识 计算机科学 人工智能 数据挖掘 地理 操作系统 考古
作者
Raven T. Reisch,Tobias Hauser,Benjamin Lutz,Alexandros Tsakpinis,Dominik Winter,Tobias Kamps,Alois Knoll
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (5-6): 3483-3500 被引量:42
标识
DOI:10.1007/s00170-021-08636-5
摘要

Abstract Wire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
多一完成签到,获得积分10
6秒前
6秒前
ao完成签到,获得积分10
6秒前
曹冬子程完成签到,获得积分20
7秒前
10秒前
xili完成签到,获得积分10
10秒前
Orange应助xvan采纳,获得10
10秒前
无情的宛菡完成签到 ,获得积分10
10秒前
多一发布了新的文献求助10
11秒前
lina发布了新的文献求助10
11秒前
12秒前
13秒前
15秒前
安青兰发布了新的文献求助10
16秒前
tjzbw完成签到,获得积分10
16秒前
xzy998发布了新的文献求助10
19秒前
周一凡发布了新的文献求助10
20秒前
21秒前
嘉悦发布了新的文献求助10
22秒前
李健的小迷弟应助ccc采纳,获得10
23秒前
小雨点Logan应助lina采纳,获得10
23秒前
小王爱学习完成签到 ,获得积分10
24秒前
殷勤的紫槐应助范炎炎采纳,获得200
24秒前
啊哈哈哈完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
大可完成签到 ,获得积分10
27秒前
bkagyin应助刻苦小鸭子采纳,获得10
28秒前
烟花应助无题采纳,获得10
28秒前
28秒前
科研通AI6应助xxx采纳,获得30
29秒前
S先生完成签到,获得积分10
31秒前
31秒前
李昕123发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
小蘑菇应助英勇羿采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431792
求助须知:如何正确求助?哪些是违规求助? 4544653
关于积分的说明 14193386
捐赠科研通 4463776
什么是DOI,文献DOI怎么找? 2446873
邀请新用户注册赠送积分活动 1438218
关于科研通互助平台的介绍 1414921