Context awareness in process monitoring of additive manufacturing using a digital twin

背景(考古学) 异常检测 过程(计算) 空间语境意识 计算机科学 人工智能 数据挖掘 地理 操作系统 考古
作者
Raven T. Reisch,Tobias Hauser,Benjamin Lutz,Alexandros Tsakpinis,Dominik Winter,Tobias Kamps,Alois Knoll
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (5-6): 3483-3500 被引量:30
标识
DOI:10.1007/s00170-021-08636-5
摘要

Abstract Wire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chenfeng完成签到,获得积分10
刚刚
小闫同学发布了新的文献求助10
1秒前
顺心一凤发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
呜呼完成签到,获得积分20
3秒前
tt发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
李健应助淡然丹寒采纳,获得10
4秒前
chenfeng发布了新的文献求助10
4秒前
5秒前
6秒前
浮游应助Cyd采纳,获得10
6秒前
6秒前
logic22发布了新的文献求助10
7秒前
7秒前
7秒前
迷人的紫真完成签到,获得积分10
7秒前
CipherSage应助王一采纳,获得10
7秒前
爱吃好吃的完成签到,获得积分10
8秒前
啦啦啦啦啦完成签到 ,获得积分10
8秒前
8秒前
zhouyan发布了新的文献求助10
9秒前
于于发布了新的文献求助10
9秒前
呜呼发布了新的文献求助10
9秒前
姚瑞峰发布了新的文献求助10
9秒前
9秒前
dpz发布了新的文献求助10
10秒前
tt完成签到,获得积分10
10秒前
cherry完成签到,获得积分10
10秒前
11秒前
11秒前
坚定自信发布了新的文献求助10
11秒前
Exile完成签到,获得积分10
11秒前
华仔应助zch19970203采纳,获得10
11秒前
JamesPei应助lcj1014采纳,获得10
11秒前
怕黑汽车发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913717
求助须知:如何正确求助?哪些是违规求助? 4188247
关于积分的说明 13007459
捐赠科研通 3956973
什么是DOI,文献DOI怎么找? 2169503
邀请新用户注册赠送积分活动 1187820
关于科研通互助平台的介绍 1095383