Context awareness in process monitoring of additive manufacturing using a digital twin

背景(考古学) 异常检测 过程(计算) 空间语境意识 计算机科学 人工智能 数据挖掘 地理 操作系统 考古
作者
Raven T. Reisch,Tobias Hauser,Benjamin Lutz,Alexandros Tsakpinis,Dominik Winter,Tobias Kamps,Alois Knoll
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Science+Business Media]
卷期号:119 (5-6): 3483-3500 被引量:42
标识
DOI:10.1007/s00170-021-08636-5
摘要

Abstract Wire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助Xavier采纳,获得10
2秒前
uuuuu完成签到,获得积分10
2秒前
Xorgan发布了新的文献求助10
3秒前
Snail6完成签到,获得积分10
3秒前
木仓完成签到,获得积分10
3秒前
3秒前
之之完成签到,获得积分10
3秒前
帅气男孩完成签到,获得积分10
4秒前
于晏完成签到 ,获得积分10
4秒前
5秒前
6秒前
包子发布了新的文献求助10
6秒前
7秒前
哒哒哒宰发布了新的文献求助10
7秒前
Lucas应助cici采纳,获得10
8秒前
Tian发布了新的文献求助10
8秒前
充电宝应助冷艳铁身采纳,获得10
8秒前
chentong完成签到,获得积分10
9秒前
ke完成签到,获得积分10
9秒前
rr完成签到,获得积分10
9秒前
wanci应助Yoe采纳,获得10
9秒前
szx发布了新的文献求助10
9秒前
10秒前
打打应助TCB采纳,获得10
10秒前
田様应助扶子茶采纳,获得10
10秒前
LeonZhang完成签到,获得积分10
11秒前
Henry发布了新的文献求助10
11秒前
今后应助朱柯虹采纳,获得10
12秒前
Li发布了新的文献求助30
12秒前
12秒前
HH发布了新的文献求助10
12秒前
DU发布了新的文献求助10
13秒前
玉米粥发布了新的文献求助10
13秒前
chenhouhan完成签到,获得积分10
14秒前
14秒前
研友_WnqRGZ发布了新的文献求助10
14秒前
婷顿完成签到 ,获得积分10
14秒前
Yee完成签到,获得积分10
14秒前
wrl2023发布了新的文献求助10
16秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241592
求助须知:如何正确求助?哪些是违规求助? 4408299
关于积分的说明 13721568
捐赠科研通 4277372
什么是DOI,文献DOI怎么找? 2347152
邀请新用户注册赠送积分活动 1344193
关于科研通互助平台的介绍 1302357