亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Context awareness in process monitoring of additive manufacturing using a digital twin

背景(考古学) 异常检测 过程(计算) 空间语境意识 计算机科学 人工智能 数据挖掘 地理 操作系统 考古
作者
Raven T. Reisch,Tobias Hauser,Benjamin Lutz,Alexandros Tsakpinis,Dominik Winter,Tobias Kamps,Alois Knoll
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (5-6): 3483-3500 被引量:42
标识
DOI:10.1007/s00170-021-08636-5
摘要

Abstract Wire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
lxd完成签到 ,获得积分10
9秒前
pzz完成签到,获得积分10
10秒前
Grinde发布了新的文献求助10
12秒前
大胆的碧菡完成签到,获得积分10
12秒前
薄荷源星球完成签到 ,获得积分10
12秒前
能干秋珊完成签到,获得积分10
15秒前
16秒前
msn00完成签到 ,获得积分10
19秒前
23秒前
23秒前
26秒前
28秒前
边雨完成签到 ,获得积分10
28秒前
自信寻真发布了新的文献求助10
31秒前
霸气乐菱发布了新的文献求助10
31秒前
32秒前
32秒前
烟花应助我心向明月采纳,获得10
34秒前
missing完成签到 ,获得积分10
34秒前
35秒前
35秒前
Pauline完成签到 ,获得积分10
36秒前
37秒前
GDL发布了新的文献求助10
39秒前
鲤鱼小鸽子完成签到,获得积分20
39秒前
39秒前
梦梦发布了新的文献求助10
43秒前
着急的猴发布了新的文献求助80
47秒前
深情安青应助GDL采纳,获得10
48秒前
57秒前
jj发布了新的文献求助20
58秒前
涵涵涵hh完成签到 ,获得积分10
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
绫小路发布了新的文献求助10
1分钟前
开朗若之完成签到 ,获得积分10
1分钟前
彭于晏应助梦梦采纳,获得10
1分钟前
可爱的函函应助jj采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671