已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Context awareness in process monitoring of additive manufacturing using a digital twin

背景(考古学) 异常检测 过程(计算) 空间语境意识 计算机科学 人工智能 数据挖掘 地理 操作系统 考古
作者
Raven T. Reisch,Tobias Hauser,Benjamin Lutz,Alexandros Tsakpinis,Dominik Winter,Tobias Kamps,Alois Knoll
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:119 (5-6): 3483-3500 被引量:42
标识
DOI:10.1007/s00170-021-08636-5
摘要

Abstract Wire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激流勇进wb完成签到 ,获得积分10
2秒前
Hayward完成签到,获得积分20
5秒前
8秒前
海边的卡夫卡完成签到,获得积分10
9秒前
科研通AI6.1应助合规部采纳,获得10
9秒前
大胆的芸遥完成签到 ,获得积分10
10秒前
11秒前
12秒前
33发布了新的文献求助20
13秒前
科研通AI6.1应助Yuanyuan采纳,获得10
13秒前
Yu完成签到,获得积分10
15秒前
阵雨发布了新的文献求助10
16秒前
SciGPT应助33采纳,获得10
16秒前
yuyu发布了新的文献求助10
17秒前
liuyingjuan829完成签到,获得积分20
19秒前
寻道图强应助highkick采纳,获得50
20秒前
科研通AI6.1应助lkl采纳,获得10
23秒前
阵雨完成签到,获得积分10
23秒前
隐形曼青应助宁过儿采纳,获得20
23秒前
momo关注了科研通微信公众号
26秒前
27秒前
28秒前
无花果应助灵芝采纳,获得20
28秒前
29秒前
30秒前
ADJ完成签到,获得积分10
30秒前
Akim应助xhc采纳,获得10
32秒前
下雨天发布了新的文献求助10
32秒前
bkagyin应助晚棠采纳,获得10
32秒前
自由的晓夏完成签到,获得积分10
33秒前
阳阳发布了新的文献求助10
34秒前
Yuanyuan发布了新的文献求助10
35秒前
36秒前
momo发布了新的文献求助10
36秒前
隐形曼青应助无水乙醚采纳,获得10
36秒前
完美世界应助林高扬采纳,获得10
36秒前
CTL完成签到,获得积分10
37秒前
大个应助超级野狼采纳,获得10
37秒前
37秒前
guo完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387