Value of artificial intelligence with novel tumor tracking technology in the diagnosis of gastric submucosal tumors by contrast‐enhanced harmonic endoscopic ultrasonography

医学 主旨 放射科 内镜超声检查 医学诊断 间质瘤 内窥镜检查 病理 间质细胞
作者
Hidekazu Tanaka,Ken Kamata,R Ishihara,Hisashi Handa,Yasuo Otsuka,Akihiro Yoshida,Tomoe Yoshikawa,Rei Ishikawa,Ayana Okamoto,Tomohiro Yamazaki,Atsushi Nakai,Shunsuke Omoto,Kosuke Minaga,Kentaro Yamao,Mamoru Takenaka,Tomohiro Watanabe,Naoshi Nishida,Masatoshi Kudo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:37 (5): 841-846 被引量:14
标识
DOI:10.1111/jgh.15780
摘要

Contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) is useful for the diagnosis of lesions inside and outside the digestive tract. This study evaluated the value of artificial intelligence (AI) in the diagnosis of gastric submucosal tumors by CH-EUS.This retrospective study included 53 patients with gastrointestinal stromal tumors (GISTs) and leiomyomas, all of whom underwent CH-EUS between June 2015 and February 2020. A novel technology, SiamMask, was used to track and trim the lesions in CH-EUS videos. CH-EUS was evaluated by AI using deep learning involving a residual neural network and leave-one-out cross-validation. The diagnostic accuracy of AI in discriminating between GISTs and leiomyomas was assessed and compared with that of blind reading by two expert endosonographers.Of the 53 patients, 42 had GISTs and 11 had leiomyomas. Mean tumor size was 26.4 mm. The consistency rate of the segment range of the tumor image extracted by SiamMask and marked by the endosonographer was 96% with a Dice coefficient. The sensitivity, specificity, and accuracy of AI in diagnosing GIST were 90.5%, 90.9%, and 90.6%, respectively, whereas those of blind reading were 90.5%, 81.8%, and 88.7%, respectively (P = 0.683). The κ coefficient between the two reviewers was 0.713.The diagnostic ability of CH-EUS results evaluated by AI to distinguish between GISTs and leiomyomas was comparable with that of blind reading by expert endosonographers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RayLam完成签到,获得积分10
2秒前
2秒前
orixero应助追寻紫安采纳,获得10
3秒前
灵巧一笑发布了新的文献求助10
3秒前
my发布了新的文献求助30
4秒前
青青子衿发布了新的文献求助10
4秒前
kiki发布了新的文献求助10
5秒前
zhao完成签到,获得积分10
5秒前
5秒前
6秒前
cfd发布了新的文献求助10
6秒前
奋斗冬萱完成签到,获得积分10
7秒前
7秒前
青花发布了新的文献求助10
8秒前
xaiomeng发布了新的文献求助10
10秒前
Cassie应助南风不竞采纳,获得10
10秒前
bkagyin应助我爱电解液采纳,获得10
11秒前
ask完成签到,获得积分10
11秒前
12秒前
14秒前
JamesPei应助小王要变瘦采纳,获得10
15秒前
周游完成签到,获得积分10
16秒前
一千岛完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
YFW发布了新的文献求助10
19秒前
勤劳半青完成签到,获得积分10
19秒前
yar应助xaiomeng采纳,获得10
20秒前
薛洁洁完成签到 ,获得积分10
20秒前
明芷蝶完成签到,获得积分10
22秒前
22秒前
木光发布了新的文献求助10
22秒前
23秒前
水獭完成签到,获得积分10
23秒前
Droplet完成签到,获得积分10
23秒前
26秒前
ktw完成签到,获得积分10
26秒前
sunflower完成签到,获得积分0
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265802
求助须知:如何正确求助?哪些是违规求助? 2905716
关于积分的说明 8334653
捐赠科研通 2575987
什么是DOI,文献DOI怎么找? 1400320
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633556