Simulation of deep eutectic solvents: Progress to promises

共晶体系 计算机科学 三元运算 分子动力学 二进制数 氢键 材料科学 纳米技术 分子 化学 计算化学 数学 算术 有机化学 合金 复合材料 程序设计语言
作者
Caroline Velez,Orlando Acevedo
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (4) 被引量:71
标识
DOI:10.1002/wcms.1598
摘要

Abstract Deep eutectic solvents (DESs) are binary or ternary mixtures of compounds that possess significant melting point depressions relative to the pure isolated components. The discovery of DESs has been a major breakthrough with multiple fields benefitting from their low cost and tunable physiochemical properties. However, tailoring DESs for specific applications through their practically unlimited synthetic combinations can be as much a hindrance as a benefit given the expense and time‐required to perform large‐scale experimental measurements. This emphasizes the need for fast computational tools capable of making accurate predictions of DES physiochemical properties exclusively from molecular structure. Yet, these systems are not trivial to model or simulate at the atomic level given their exceedingly nonideal behaviors, asymmetry of components, and the complexity of their molecular electrostatic interactions. Despite the challenge, computational reports featuring quantum mechanical (QM) methods have provided significant understanding into the relationship between the melting point depression and the unique and complex hydrogen bond network present in DESs. Classical molecular dynamics (MD) methods have examined bulk‐phase solvent organization in conjunction with thermodynamic and transport properties. Machine learning (ML) algorithms have shown great potential as structure–property prediction tools. Overall, this review highlights computational accomplishments that have meaningfully advanced our understanding of DESs and strives to give the reader a sense of the overall strengths and drawbacks of the methodologies employed while hinting at promises of advances to come. This article is categorized under: Software > Simulation Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴小台呀发布了新的文献求助50
4秒前
满意雪碧完成签到,获得积分10
5秒前
小旋风发布了新的文献求助20
6秒前
6秒前
8秒前
8秒前
10秒前
kepler完成签到,获得积分10
11秒前
Akim应助樱桃采纳,获得10
13秒前
13秒前
14秒前
why发布了新的文献求助10
14秒前
kangzezhou完成签到,获得积分10
15秒前
nimtewang发布了新的文献求助10
15秒前
科研通AI6.2应助zxh采纳,获得10
16秒前
犹豫笑容完成签到,获得积分20
16秒前
18秒前
犹豫笑容发布了新的文献求助10
19秒前
高高高发布了新的文献求助10
19秒前
21秒前
77发布了新的文献求助10
24秒前
gamma完成签到 ,获得积分10
25秒前
陈幡发布了新的文献求助10
27秒前
28秒前
bkagyin应助啊哈采纳,获得10
28秒前
倪qing发布了新的文献求助10
31秒前
外外完成签到,获得积分10
32秒前
SciGPT应助abo采纳,获得10
34秒前
吴小台呀发布了新的文献求助50
35秒前
36秒前
zxt完成签到 ,获得积分10
38秒前
听雨完成签到,获得积分10
41秒前
42秒前
青雾雨完成签到,获得积分10
45秒前
苹果元槐完成签到 ,获得积分10
45秒前
赘婿应助犹豫笑容采纳,获得10
47秒前
duoduo完成签到,获得积分10
48秒前
wang完成签到,获得积分10
49秒前
Sunny完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877825
求助须知:如何正确求助?哪些是违规求助? 6546241
关于积分的说明 15682407
捐赠科研通 4996547
什么是DOI,文献DOI怎么找? 2692754
邀请新用户注册赠送积分活动 1634753
关于科研通互助平台的介绍 1592428