分离器(采油)
材料科学
阴极
化学工程
电解质
复合材料
热力学
电极
物理化学
化学
物理
工程类
作者
Min Zhang,Norio Nakamura,Yichen Gan,Helin Wang,Fu Liu,Miao Bai,Xiaoyu Tang,Zhiqiao Wang,Shaowen Li,Ahu Shao,Kefan Zhou,Tianyu Wang,Zhuyi Wang,Shuai Yuan,Yue Ma
标识
DOI:10.1002/aenm.202201390
摘要
Abstract The reliable operation of Li metal batteries suffers from cathode collapse due to high‐voltage cycling, interfacial reactivity of the Li deposits, self‐discharge at the elevated temperatures, as well as the power output deterioration in low‐temperature scenarios. In contrast to the individual electrode optimization, herein, a hetero‐layered separator with an asymmetric functional coating on polyethylene is proposed in response to the aforementioned issues: On the face‐to‐cathode side, the hybrid layer of the molecular sieve and sulfonated melamine formaldehyde can scavenge the hydrofluoric acid and moisture residues from the carbonate electrolyte, maintaining the cathode robustness in both the high‐voltage cycling or high‐temperature storage scenarios; while the pre‐coated Ag 2 S layer in situ generates the Li 10 Ag 3 ‐Li 2 S composite matrix in contact with the Li foil, promoting interfacial ion diffusion and isotropic Li deposition. The as‐constructed LiNi 0.8 Co 0.1 Mn 0.1 O 2 /Li pouch cell (3.2 Ah) with the hetero‐layered separator can achieve a high energy density of 400.6 Wh kg −1 on the cell level, as well as a wider temperature adaptability (0–75 °C). This asymmetric separator strategy enables facile energy‐dense cell prototyping with the commercial electrode/electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI