Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer

个性化医疗 计算机科学 生物标志物 精密医学 情态动词 基因组学 生物标志物发现 计算生物学 生物信息学 医学 基因组 蛋白质组学 生物 病理 基因 生物化学 化学 高分子化学
作者
Jing Liang,Zongwei Li,Caitong Yue,Zhuo Hu,Han Cheng,Zexian Liu,Wei-Feng Guo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:9
标识
DOI:10.1093/bib/bbac254
摘要

Finding personalized biomarkers for disease prediction of patients with cancer remains a massive challenge in precision medicine. Most methods focus on one subnetwork or module as a network biomarker; however, this ignores the early warning capabilities of other modules with different configurations of biomarkers (i.e. multi-modal personalized biomarkers). Identifying such modules would not only predict disease but also provide effective therapeutic drug target information for individual patients. To solve this problem, we developed a novel model (denoted multi-modal personalized dynamic network biomarkers (MMPDNB)) based on a multi-modal optimization mechanism and personalized dynamic network biomarker (PDNB) theory, which can provide multiple modules of personalized biomarkers and unveil their multi-modal properties. Using the genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, we validated the effectiveness of the MMPDNB model. The experimental results showed that compared with other advanced methods, MMPDNB can more effectively predict the critical state with the highest early warning signal score during cancer development. Furthermore, MMPDNB more significantly identified PDNBs containing driver and biomarker genes specific to cancer tissues. More importantly, we validated the biological significance of multi-modal PDNBs, which could provide effective drug targets of individual patients as well as markers for predicting early warning signals of the critical disease state. In conclusion, multi-modal optimization is an effective method to identify PDNBs and offers a new perspective for understanding tumor heterogeneity in cancer precision medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巅峰小学生完成签到,获得积分20
刚刚
超级翠应助wuran采纳,获得10
刚刚
扶桑发布了新的文献求助10
2秒前
领导范儿应助myyang采纳,获得10
2秒前
Owen应助单薄怡采纳,获得30
2秒前
舸宇发布了新的文献求助10
2秒前
孔雀翎发布了新的文献求助10
3秒前
俊逸的代曼完成签到,获得积分10
3秒前
精明柜子应助美好的觅云采纳,获得100
4秒前
蔡徐坤发布了新的文献求助30
4秒前
4秒前
4秒前
欢喜的丹寒完成签到,获得积分20
4秒前
5秒前
Biohacking完成签到,获得积分10
5秒前
shim完成签到,获得积分10
5秒前
5秒前
5秒前
LL完成签到,获得积分10
5秒前
水本无忧87完成签到,获得积分10
6秒前
6秒前
科研通AI6应助myyang采纳,获得10
7秒前
JHHHH完成签到,获得积分10
8秒前
8秒前
赘婿应助小霖采纳,获得10
8秒前
9秒前
赘婿应助tcf采纳,获得10
10秒前
科研通AI6应助tcf采纳,获得10
10秒前
可爱的函函应助tcf采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助tcf采纳,获得10
10秒前
orixero应助tcf采纳,获得10
10秒前
10秒前
标致无心发布了新的文献求助10
10秒前
ky幻影发布了新的文献求助10
10秒前
小马甲应助黄子腾采纳,获得10
10秒前
11秒前
huiyue完成签到,获得积分10
12秒前
12秒前
烟花应助duoduo采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302