Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer

个性化医疗 计算机科学 生物标志物 精密医学 情态动词 基因组学 生物标志物发现 计算生物学 生物信息学 医学 基因组 蛋白质组学 生物 病理 基因 生物化学 化学 高分子化学
作者
Jing Liang,Zongwei Li,Caitong Yue,Zhuo Hu,Han Cheng,Zexian Liu,Wei-Feng Guo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:9
标识
DOI:10.1093/bib/bbac254
摘要

Finding personalized biomarkers for disease prediction of patients with cancer remains a massive challenge in precision medicine. Most methods focus on one subnetwork or module as a network biomarker; however, this ignores the early warning capabilities of other modules with different configurations of biomarkers (i.e. multi-modal personalized biomarkers). Identifying such modules would not only predict disease but also provide effective therapeutic drug target information for individual patients. To solve this problem, we developed a novel model (denoted multi-modal personalized dynamic network biomarkers (MMPDNB)) based on a multi-modal optimization mechanism and personalized dynamic network biomarker (PDNB) theory, which can provide multiple modules of personalized biomarkers and unveil their multi-modal properties. Using the genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, we validated the effectiveness of the MMPDNB model. The experimental results showed that compared with other advanced methods, MMPDNB can more effectively predict the critical state with the highest early warning signal score during cancer development. Furthermore, MMPDNB more significantly identified PDNBs containing driver and biomarker genes specific to cancer tissues. More importantly, we validated the biological significance of multi-modal PDNBs, which could provide effective drug targets of individual patients as well as markers for predicting early warning signals of the critical disease state. In conclusion, multi-modal optimization is an effective method to identify PDNBs and offers a new perspective for understanding tumor heterogeneity in cancer precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mylaodao完成签到,获得积分0
1秒前
2秒前
甜甜圈完成签到 ,获得积分10
2秒前
shidewu完成签到,获得积分10
2秒前
大福完成签到,获得积分0
2秒前
3秒前
3秒前
hqq发布了新的文献求助10
6秒前
kiki发布了新的文献求助10
6秒前
whisper完成签到,获得积分10
6秒前
11秒前
orixero应助kiki采纳,获得10
12秒前
香蕉觅云应助张小卷采纳,获得10
12秒前
her完成签到,获得积分10
12秒前
16秒前
16秒前
17秒前
18秒前
18秒前
星辰坠于海应助Sunny88采纳,获得50
20秒前
21秒前
酷酷一笑发布了新的文献求助10
22秒前
嗯嗯发布了新的文献求助10
22秒前
SHANEE完成签到,获得积分10
22秒前
张小卷发布了新的文献求助10
24秒前
猪猪hero发布了新的文献求助10
24秒前
24秒前
可爱的函函应助果实采纳,获得10
24秒前
hqq发布了新的文献求助10
25秒前
25秒前
26秒前
SDFSGFDR完成签到,获得积分10
28秒前
李响完成签到,获得积分10
29秒前
30秒前
31秒前
Tonald Yang发布了新的文献求助10
32秒前
33秒前
丘比特应助hqq采纳,获得10
33秒前
小马完成签到,获得积分10
34秒前
华仔应助昵称采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150