Carboxylate-Containing Wide-Bandgap Polymers for High-Voltage Non-Fullerene Organic Solar Cells

材料科学 羧酸盐 开路电压 聚合物 有机太阳能电池 带隙 结晶度 光伏系统 轨道能级差 光伏 化学工程 电压 光电子学 有机化学 化学 分子 电气工程 复合材料 工程类
作者
Xianda Li,Ailing Tang,Qing Guo,Xugang Guo,Jianhua Chen,Qiang Guo,Mengwei Ji,Yuhan Meng,Xiangyu Li,Erjun Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (28): 32308-32318 被引量:12
标识
DOI:10.1021/acsami.2c07251
摘要

As one of the polymer modification strategies, carboxylate functionalization has proved effective in downshifting the energy levels and enhancing polymer crystallinity and aggregation. However, high-performance carboxylate-containing polymers are still limited for organic solar cells (OSCs), especially with open-circuit voltage (VOC) above 1.0 V. Herein, we utilize two carboxylate-functionalized wide-band gap (WBG) donor polymers (TTC-F and TTC-Cl) to pair with two WBG electron acceptors (BTA5 and F-BTA5) for high-voltage OSCs. Due to the deeper molecular energy levels, chlorinated polymer TTC-Cl shows higher VOC than fluorinated polymer TTC-F. Furthermore, because of the stronger aggregation in the film, the TTC-Cl-based devices attain suppressed energetic disorders and trap-assisted recombination, decreasing voltage loss and JSC loss. Finally, the TTC-Cl: F-BTA5 blend achieves a higher VOC of 1.17 V and an excellent PCE of 10.98%, one of the best results for high-voltage carboxylate-containing polymers. In addition, the TTC-Cl: BTA5 combination demonstrates the highest VOC of 1.25 V with an ultralow nonradiative energy loss of 0.17 eV. Our results indicate that the carboxylate-containing polymer donors have significant application potential for high-voltage OSCs due to reduced energy loss and improved charge transport and dissociation. Furthermore, the matched absorption spectra with the indoor light sources and low voltage loss promote these material combinations to construct high-performance indoor photovoltaics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖涫完成签到,获得积分10
2秒前
11111发布了新的文献求助10
2秒前
健忘的牛排完成签到,获得积分10
3秒前
wmmm完成签到,获得积分10
3秒前
Akim应助爱吃泡芙采纳,获得10
3秒前
老迟到的书雁完成签到 ,获得积分10
3秒前
3秒前
正经俠发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
学科共进完成签到,获得积分10
6秒前
百草27完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
绵马紫萁发布了新的文献求助10
9秒前
10秒前
fzhou完成签到 ,获得积分10
10秒前
尘雾发布了新的文献求助10
10秒前
11秒前
一一发布了新的文献求助20
11秒前
11秒前
Aixia完成签到 ,获得积分10
12秒前
葡萄糖完成签到,获得积分10
12秒前
哈哈完成签到,获得积分10
12秒前
在水一方应助CC采纳,获得10
12秒前
12秒前
余笙完成签到 ,获得积分10
13秒前
神勇的雅香应助科研混子采纳,获得10
13秒前
TT发布了新的文献求助10
14秒前
李顺完成签到,获得积分20
15秒前
ayin发布了新的文献求助10
15秒前
wait发布了新的文献求助10
15秒前
我是站长才怪应助xg采纳,获得10
16秒前
童话艺术佳完成签到,获得积分10
16秒前
稀罕你完成签到,获得积分10
16秒前
junzilan发布了新的文献求助10
16秒前
anny.white完成签到,获得积分10
17秒前
科研通AI5应助平常的毛豆采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824