摘要
L’INRS a conduit, entre 2000 et 2019, de nombreux travaux visant à réduire le nombre et la gravité des accidents du travail dus au renversement latéral d’un chariot élévateur. À l’achèvement de l’ensemble des travaux, la question s’est posée de l’impact de ceux-ci sur la sinistralité au cours de cette période. L’indicateur classique de suivi du nombre de ces accidents, construit à partir des données statistiques de la Caisse nationale d’assurance maladie (Cnam), s’est révélé être inadapté du fait d’un changement de nomenclature intervenu en 2013. Epicea est une base de données administrée par l’INRS, qui contient les informations relatives au maximum d’accidents mortels, et certains accidents graves. Elle est alimentée par les récits écrits des contrôleurs des Caisses d’assurance retraite et de la santé au travail (Carsat), suite à un accident. Une analyse textuelle par classification descendante hiérarchique (algorithme Alceste conçu par Max Reinert) a alors été envisagée comme alternative à l’exploitation des données chiffrées, en l’appliquant aux récits des accidents, d’une part, et aux mesures de prévention préconisées par les contrôleurs, d’autre part. Après le partitionnement des textes disponibles en unités de contexte élémentaire (u.c.e), des classes d’u.c.e ont été identifiées pour chaque type de récit. Le suivi, au cours du temps, de deux classes spécifiques relatives aux aspects techniques et à la circulation du chariot, a permis de montrer que leur présence diminuait dans les textes à partir des années 2012–2013. L’hypothèse a alors été formulée d’un possible impact des préconisations, publications et résultats obtenus par l’INRS sur la sinistralité. Si la méthode d’analyse proposée est confirmée sur d’autres études, cette approche pourrait être une alternative fructueuse au suivi de l’impact d’actions de prévention lorsque des données chiffrées précises font défaut. Between years 2000 and 2019, INRS conducted several studies aimed at reducing the number and severity of accidents at work caused by forklift trucks during a lateral tipover. At the end of this work, the question arose of the impact of this work on the accident rate during this period. The traditional indicator of monitoring the number of these accidents, collected from the statistical data of the Cnam (National Health Insurance Fund), proved to be unsuitable due to a change in nomenclature in 2013. Epicea is a database administered by the INRS, which contains information on the maximum of fatal accidents, and some of serious accidents. It is fed by the written investigations of the inspectors of the Carsat (Caisses d’assurance retraite et de la santé au travail), following an accident. A textual analysis by hierarchical top-down classification (Alceste algorithm designed by Max Reinert) was then experimented as an alternative to the exploitation of numerical data, by applying it to the accounts of accidents, on the one hand, and to the prevention measures prescribed by the inspectors, on the other. After partitioning the available texts into elementary context units (ECU), classes of ECU were identified for each type of account. The monitoring, over time, of two specific classes relating to the technical aspects and the circulation of the truck, made it possible to show that their presence decreased in the texts from the years 2012–2013. The hypothesis was then formulated of a possible impact of the recommendations, publications and results obtained by the INRS on the accident rate. If the proposed analysis method is confirmed for other accident situations, this approach could be a fruitful alternative for monitoring the impact of prevention actions when precise figures are lacking.