Évaluation de l’impact d’actions en prévention menées sur 20 ans par l’analyse textuelle de 77 cas d’accidents de chariots élévateurs

人文学科 政治学 哲学 艺术
作者
C. Tissot,Jérôme Rebelle
出处
期刊:Archives Des Maladies Professionnelles Et De L Environnement [Elsevier]
卷期号:83 (6): 558-570
标识
DOI:10.1016/j.admp.2022.05.002
摘要

L’INRS a conduit, entre 2000 et 2019, de nombreux travaux visant à réduire le nombre et la gravité des accidents du travail dus au renversement latéral d’un chariot élévateur. À l’achèvement de l’ensemble des travaux, la question s’est posée de l’impact de ceux-ci sur la sinistralité au cours de cette période. L’indicateur classique de suivi du nombre de ces accidents, construit à partir des données statistiques de la Caisse nationale d’assurance maladie (Cnam), s’est révélé être inadapté du fait d’un changement de nomenclature intervenu en 2013. Epicea est une base de données administrée par l’INRS, qui contient les informations relatives au maximum d’accidents mortels, et certains accidents graves. Elle est alimentée par les récits écrits des contrôleurs des Caisses d’assurance retraite et de la santé au travail (Carsat), suite à un accident. Une analyse textuelle par classification descendante hiérarchique (algorithme Alceste conçu par Max Reinert) a alors été envisagée comme alternative à l’exploitation des données chiffrées, en l’appliquant aux récits des accidents, d’une part, et aux mesures de prévention préconisées par les contrôleurs, d’autre part. Après le partitionnement des textes disponibles en unités de contexte élémentaire (u.c.e), des classes d’u.c.e ont été identifiées pour chaque type de récit. Le suivi, au cours du temps, de deux classes spécifiques relatives aux aspects techniques et à la circulation du chariot, a permis de montrer que leur présence diminuait dans les textes à partir des années 2012–2013. L’hypothèse a alors été formulée d’un possible impact des préconisations, publications et résultats obtenus par l’INRS sur la sinistralité. Si la méthode d’analyse proposée est confirmée sur d’autres études, cette approche pourrait être une alternative fructueuse au suivi de l’impact d’actions de prévention lorsque des données chiffrées précises font défaut. Between years 2000 and 2019, INRS conducted several studies aimed at reducing the number and severity of accidents at work caused by forklift trucks during a lateral tipover. At the end of this work, the question arose of the impact of this work on the accident rate during this period. The traditional indicator of monitoring the number of these accidents, collected from the statistical data of the Cnam (National Health Insurance Fund), proved to be unsuitable due to a change in nomenclature in 2013. Epicea is a database administered by the INRS, which contains information on the maximum of fatal accidents, and some of serious accidents. It is fed by the written investigations of the inspectors of the Carsat (Caisses d’assurance retraite et de la santé au travail), following an accident. A textual analysis by hierarchical top-down classification (Alceste algorithm designed by Max Reinert) was then experimented as an alternative to the exploitation of numerical data, by applying it to the accounts of accidents, on the one hand, and to the prevention measures prescribed by the inspectors, on the other. After partitioning the available texts into elementary context units (ECU), classes of ECU were identified for each type of account. The monitoring, over time, of two specific classes relating to the technical aspects and the circulation of the truck, made it possible to show that their presence decreased in the texts from the years 2012–2013. The hypothesis was then formulated of a possible impact of the recommendations, publications and results obtained by the INRS on the accident rate. If the proposed analysis method is confirmed for other accident situations, this approach could be a fruitful alternative for monitoring the impact of prevention actions when precise figures are lacking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whn完成签到,获得积分10
刚刚
CY完成签到 ,获得积分10
2秒前
3秒前
笑点低的豪完成签到,获得积分10
4秒前
4秒前
雨相所至应助whn采纳,获得30
4秒前
苏书白应助restudy68采纳,获得10
5秒前
5秒前
Cain完成签到,获得积分10
7秒前
所所应助yanice采纳,获得10
7秒前
李健应助开放的大侠采纳,获得10
7秒前
论文侠完成签到 ,获得积分10
8秒前
Read_y发布了新的文献求助10
8秒前
小yy发布了新的文献求助10
9秒前
ding应助Rui采纳,获得10
9秒前
wanci应助兜兜采纳,获得10
11秒前
屈狒狒完成签到,获得积分10
12秒前
12秒前
14秒前
斯文败类应助宸1采纳,获得10
14秒前
14秒前
15秒前
16秒前
屈狒狒发布了新的文献求助10
16秒前
wanci应助你在说神马采纳,获得30
16秒前
dzbb应助李伟采纳,获得10
17秒前
19秒前
August发布了新的文献求助10
19秒前
west发布了新的文献求助20
19秒前
十七发布了新的文献求助10
19秒前
晓凡发布了新的文献求助10
20秒前
ding应助小井bling采纳,获得10
20秒前
20秒前
斯文败类应助风中刺猬采纳,获得10
21秒前
22秒前
22秒前
22秒前
武大师发布了新的文献求助10
23秒前
23秒前
FashionBoy应助小yy采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721