生物转化
芥子酶
化学
新陈代谢
硫代葡萄糖苷
生物化学
铁质
硫氰酸盐
萝卜硫苷
肝肠循环
生物
植物
酶
芸苔属
有机化学
作者
Jiaying Wu,Shumao Cui,Junsheng Liu,Xin Tang,Jianxin Zhao,Hao Zhang,Bingyong Mao,Wei Chen
标识
DOI:10.1080/10408398.2022.2059441
摘要
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an “enterohepatic circulation” in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
科研通智能强力驱动
Strongly Powered by AbleSci AI