EV Charging Strategy Considering Transformer Lifetime via Evolutionary Curriculum Learning-Based Multiagent Deep Reinforcement Learning

强化学习 马尔可夫决策过程 计算机科学 变压器 单点故障 人工智能 马尔可夫过程 分布式计算 工程类 电压 电气工程 数学 统计
作者
Sichen Li,Weihao Hu,Di Cao,Zhenyuan Zhang,Qi Huang,Zhe Chen,Frede Blaabjerg
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 2774-2787 被引量:19
标识
DOI:10.1109/tsg.2022.3167021
摘要

An accelerated loss of life (LOL) of distribution transformers has been observed in recent years owing to the increasing penetration of electric vehicles (EVs). This paper proposes an evolutionary curriculum learning (ECL)-based multi-agent deep reinforcement learning (MADRL) approach for optimizing transformer LOL while considering various charging demands of different EV owners. Specifically, the problem of charging multiple EVs is cast as a Markov game. It is solved by the proposed MADRL algorithm by modeling each EV controller as an agent with a specific objective. During the centralized training stage, a novel centralized ECL mechanism is adopted to enhance the coordination of multiple EVs. It enables the proposed approach to address the management of large-scale EV charging. When the training procedure is completed, the proposed approach is deployed in a decentralized manner. Herein, all the agents make decisions based solely on local information. The decentralized manner of execution helps preserve the privacy of EV owners, reduce the related communication cost, and avoid single-point failure. Comparative tests utilizing real-world data demonstrate that the proposed approach can achieve coordinated charging of a large number of EVs while satisfying the various charging demands of different EV owners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西西西完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
niuniu完成签到,获得积分20
1秒前
Kenzonvay完成签到,获得积分10
1秒前
顺利毕业完成签到 ,获得积分10
1秒前
2秒前
酷波er应助Minton采纳,获得10
2秒前
爆米花应助追风采纳,获得10
3秒前
Edison发布了新的文献求助10
3秒前
odell发布了新的文献求助10
3秒前
4秒前
4秒前
laochen发布了新的文献求助10
4秒前
heylay发布了新的文献求助10
4秒前
MX001发布了新的文献求助10
4秒前
ggg完成签到,获得积分10
5秒前
慕子默完成签到,获得积分10
5秒前
yyytr发布了新的文献求助10
5秒前
阿木木完成签到,获得积分10
6秒前
时米米米发布了新的文献求助10
6秒前
6秒前
zyf完成签到,获得积分10
6秒前
忧伤的二锅头完成签到 ,获得积分10
7秒前
JPH1990发布了新的文献求助30
7秒前
Baraka完成签到,获得积分10
7秒前
油菜籽发布了新的文献求助10
8秒前
海棠花未眠完成签到,获得积分10
8秒前
9秒前
onesail完成签到 ,获得积分10
10秒前
10秒前
漂泊1991发布了新的文献求助10
10秒前
10秒前
MX001完成签到,获得积分10
10秒前
Julo发布了新的文献求助10
11秒前
Emma完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680