Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments

姿势 人工智能 关节式人体姿态估计 三维姿态估计 计算机科学 计算机视觉 边距(机器学习) 循环神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Xiaoming Deng,Dexin Zuo,Yinda Zhang,Zhaopeng Cui,Jian Cheng,Ping Tan,Liang Chang,Marc Pollefeys,Sean Fanello,Hongan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 932-945 被引量:5
标识
DOI:10.1109/tpami.2022.3159725
摘要

3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance. In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second, the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with 3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with the simple yet efficient alignment and network architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖完成签到,获得积分10
1秒前
典雅的迎波完成签到,获得积分10
1秒前
xh发布了新的文献求助10
1秒前
赘婿应助WN采纳,获得10
2秒前
laola完成签到,获得积分10
2秒前
2秒前
qw完成签到,获得积分10
2秒前
2秒前
大傻春完成签到 ,获得积分10
2秒前
shiliang完成签到,获得积分10
3秒前
朴素的问枫完成签到,获得积分10
4秒前
文静的雨筠完成签到 ,获得积分10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
PM2555发布了新的文献求助10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
azzkmj完成签到,获得积分10
5秒前
调皮的天真完成签到 ,获得积分10
6秒前
缪尹盛完成签到,获得积分10
6秒前
123应助萨芬撒采纳,获得30
6秒前
不能当饭吃完成签到,获得积分10
7秒前
打打发布了新的文献求助10
7秒前
佳loong完成签到,获得积分10
8秒前
8秒前
yicheng发布了新的文献求助10
8秒前
FashionBoy应助61forsci采纳,获得30
8秒前
you完成签到,获得积分10
9秒前
TRY完成签到,获得积分10
9秒前
小袁完成签到,获得积分10
9秒前
Gentleman完成签到,获得积分10
10秒前
xh完成签到,获得积分20
10秒前
哈士轩完成签到,获得积分10
10秒前
10秒前
小灰灰完成签到 ,获得积分10
10秒前
zhuzhu完成签到,获得积分10
11秒前
aa完成签到,获得积分20
11秒前
曾经完成签到 ,获得积分10
12秒前
CatSYL完成签到 ,获得积分10
12秒前
彭于彦祖应助幽默思雁采纳,获得100
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294740
求助须知:如何正确求助?哪些是违规求助? 2930629
关于积分的说明 8446865
捐赠科研通 2602968
什么是DOI,文献DOI怎么找? 1420801
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643500