Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments

姿势 人工智能 关节式人体姿态估计 三维姿态估计 计算机科学 计算机视觉 边距(机器学习) 循环神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Xiaoming Deng,Dexin Zuo,Yinda Zhang,Zhaopeng Cui,Jian Cheng,Ping Tan,Liang Chang,Marc Pollefeys,Sean Fanello,Hongan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 932-945 被引量:18
标识
DOI:10.1109/tpami.2022.3159725
摘要

3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance. In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second, the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with 3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with the simple yet efficient alignment and network architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浪荡胭脂马完成签到,获得积分10
1秒前
在水一方应助kk采纳,获得10
1秒前
flyabc完成签到,获得积分10
1秒前
Hello应助cz采纳,获得10
1秒前
1秒前
化学天空完成签到,获得积分10
2秒前
2秒前
2秒前
zljgy2000发布了新的文献求助10
3秒前
3秒前
小二郎应助zbr采纳,获得10
3秒前
呆萌安双发布了新的文献求助10
3秒前
京城不降雪c完成签到,获得积分10
4秒前
yaya发布了新的文献求助10
4秒前
Owen应助大炮弹采纳,获得10
4秒前
听风雨发布了新的文献求助10
4秒前
羡鱼发布了新的文献求助10
4秒前
缥缈的水彤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
失眠的数据线完成签到,获得积分10
5秒前
5秒前
烁烁子完成签到,获得积分20
6秒前
胡春柳应助lucinda采纳,获得10
6秒前
1351567822应助啊懂采纳,获得80
6秒前
俭朴外绣发布了新的文献求助10
6秒前
乐乐应助复杂海豚采纳,获得10
6秒前
6秒前
7秒前
dh发布了新的文献求助10
7秒前
Stefano完成签到,获得积分10
7秒前
7秒前
完美世界应助念薇采纳,获得10
7秒前
郭倍坚发布了新的文献求助10
8秒前
年轻绮南完成签到,获得积分10
8秒前
ROSE完成签到 ,获得积分10
8秒前
斯文败类应助红3采纳,获得10
9秒前
Ccc发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827