Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments

姿势 人工智能 关节式人体姿态估计 三维姿态估计 计算机科学 计算机视觉 边距(机器学习) 循环神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Xiaoming Deng,Dexin Zuo,Yinda Zhang,Zhaopeng Cui,Jian Cheng,Ping Tan,Liang Chang,Marc Pollefeys,Sean Fanello,Hongan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 932-945 被引量:18
标识
DOI:10.1109/tpami.2022.3159725
摘要

3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance. In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second, the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with 3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with the simple yet efficient alignment and network architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小完成签到 ,获得积分10
刚刚
浮生若梦发布了新的文献求助20
1秒前
光亮向露完成签到,获得积分10
1秒前
2秒前
wanci应助就叫柠檬吧采纳,获得10
2秒前
科目三应助正直寄云采纳,获得10
2秒前
mf发布了新的文献求助10
3秒前
3秒前
3秒前
天天向上完成签到,获得积分10
4秒前
4秒前
Z小姐发布了新的文献求助20
5秒前
大块发布了新的文献求助10
5秒前
难过颦发布了新的文献求助10
5秒前
6秒前
学术猩猩发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助司马千筹采纳,获得10
7秒前
zz发布了新的文献求助10
7秒前
9秒前
52251013106发布了新的文献求助10
9秒前
天天向上发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
善学以致用应助董竹君采纳,获得10
12秒前
12秒前
小蘑菇应助锅包肉采纳,获得10
13秒前
14秒前
在水一方应助时尚的青丝采纳,获得10
14秒前
合适冰棍发布了新的文献求助10
15秒前
深情安青应助长情洙采纳,获得10
15秒前
研友_yLpYkn完成签到,获得积分10
16秒前
积极的凌波完成签到,获得积分20
17秒前
17秒前
领导范儿应助Q同学采纳,获得10
17秒前
abcdef发布了新的文献求助10
17秒前
科研狗完成签到 ,获得积分10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003103
求助须知:如何正确求助?哪些是违规求助? 4247982
关于积分的说明 13234780
捐赠科研通 4046924
什么是DOI,文献DOI怎么找? 2214060
邀请新用户注册赠送积分活动 1224112
关于科研通互助平台的介绍 1144386