Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments

姿势 人工智能 关节式人体姿态估计 三维姿态估计 计算机科学 计算机视觉 边距(机器学习) 循环神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 语言学 哲学
作者
Xiaoming Deng,Dexin Zuo,Yinda Zhang,Zhaopeng Cui,Jian Cheng,Ping Tan,Liang Chang,Marc Pollefeys,Sean Fanello,Hongan Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 932-945 被引量:18
标识
DOI:10.1109/tpami.2022.3159725
摘要

3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance. In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second, the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with 3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with the simple yet efficient alignment and network architectures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao发布了新的文献求助10
刚刚
刚刚
激昂的逊发布了新的文献求助10
刚刚
1秒前
浮游应助丘奇采纳,获得10
1秒前
1秒前
1秒前
义气芷荷完成签到 ,获得积分10
3秒前
Lucas应助yy采纳,获得10
4秒前
0713应助kcaj采纳,获得10
4秒前
科研通AI6应助聪慧石头采纳,获得10
4秒前
xx发布了新的文献求助10
4秒前
清爽寒梦发布了新的文献求助10
5秒前
自由的小土豆完成签到,获得积分20
5秒前
5秒前
冷酷饼干完成签到 ,获得积分10
5秒前
5秒前
快乐科研狗完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
老坛发布了新的文献求助10
6秒前
陈住气发布了新的文献求助10
6秒前
yuyu发布了新的文献求助10
7秒前
薄荷完成签到,获得积分10
8秒前
科研通AI6应助YSK819采纳,获得10
9秒前
大气的惜天完成签到,获得积分10
9秒前
XIAXIA发布了新的文献求助10
9秒前
冠心没有病完成签到,获得积分10
10秒前
是why耶完成签到,获得积分10
10秒前
仙影沫完成签到,获得积分10
10秒前
10秒前
3w发布了新的文献求助10
11秒前
11秒前
马梦秋完成签到,获得积分10
11秒前
chen发布了新的文献求助10
12秒前
激昂的逊完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901