亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Prototype Refinement with Progressive Inter-categorical Discrimination Maximization for Few-shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
njmuzwj发布了新的文献求助30
9秒前
Shan发布了新的文献求助10
9秒前
14秒前
njmuzwj完成签到,获得积分10
18秒前
muyi发布了新的文献求助10
20秒前
24秒前
笨笨店员应助ceeray23采纳,获得20
25秒前
28秒前
Zilch发布了新的文献求助10
32秒前
33秒前
cvvvv发布了新的文献求助10
36秒前
情怀应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
von17发布了新的文献求助10
52秒前
souther完成签到,获得积分0
52秒前
无花果应助sunhealth采纳,获得80
57秒前
大个应助cvvvv采纳,获得10
58秒前
两袖清风完成签到,获得积分10
59秒前
1分钟前
1分钟前
明理夏波完成签到,获得积分10
1分钟前
1分钟前
呆毛发布了新的文献求助10
1分钟前
1分钟前
可乐发布了新的文献求助10
1分钟前
von17完成签到,获得积分20
1分钟前
1分钟前
JamesPei应助lvlv采纳,获得10
1分钟前
electricelectric完成签到,获得积分0
1分钟前
Alkaid发布了新的文献求助10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463234
求助须知:如何正确求助?哪些是违规求助? 4567954
关于积分的说明 14312159
捐赠科研通 4493857
什么是DOI,文献DOI怎么找? 2461920
邀请新用户注册赠送积分活动 1450910
关于科研通互助平台的介绍 1426115