Hierarchical Prototype Refinement With Progressive Inter-Categorical Discrimination Maximization for Few-Shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3414-3429 被引量:18
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting完成签到 ,获得积分10
刚刚
刚刚
徐恺完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Jasper应助欢呼豆芽采纳,获得10
1秒前
2秒前
所所应助善良的ltl采纳,获得10
3秒前
shenerqing发布了新的文献求助10
3秒前
小杜发布了新的文献求助10
3秒前
3秒前
xueshu发布了新的文献求助10
3秒前
风住的街完成签到,获得积分10
3秒前
难过板栗发布了新的文献求助10
3秒前
666发布了新的文献求助10
3秒前
4秒前
薇子完成签到,获得积分10
4秒前
4秒前
4秒前
情怀应助能干耳机采纳,获得10
5秒前
CodeCraft应助wyiii采纳,获得10
5秒前
dd完成签到,获得积分10
5秒前
晏之傲者发布了新的文献求助30
5秒前
5秒前
Hina完成签到,获得积分10
5秒前
6秒前
6秒前
JokerCing完成签到,获得积分10
6秒前
wkjfh应助1111111111111采纳,获得10
6秒前
山水完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
ytnju发布了新的文献求助10
8秒前
林非鹿发布了新的文献求助10
9秒前
orixero应助天空之城采纳,获得10
9秒前
璇璇完成签到,获得积分10
9秒前
hr发布了新的文献求助10
9秒前
浮游应助Lx采纳,获得10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401