Hierarchical Prototype Refinement with Progressive Inter-categorical Discrimination Maximization for Few-shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77发布了新的文献求助10
刚刚
orixero应助liike采纳,获得10
刚刚
小蒋完成签到 ,获得积分10
1秒前
Hello应助cc采纳,获得10
1秒前
跑掉发布了新的文献求助10
1秒前
张露完成签到 ,获得积分10
3秒前
破晓发布了新的文献求助20
4秒前
思源应助LSH970829采纳,获得10
4秒前
Orange应助炙热的朋友采纳,获得10
4秒前
4秒前
newstrong完成签到,获得积分10
5秒前
22222完成签到,获得积分20
6秒前
洛神之心1124完成签到,获得积分10
6秒前
6秒前
e1发布了新的文献求助10
6秒前
7秒前
Pan完成签到,获得积分10
7秒前
22222发布了新的文献求助10
10秒前
从容飞阳完成签到,获得积分10
10秒前
Akim应助cpl采纳,获得10
10秒前
英吉利25发布了新的文献求助10
11秒前
赘婿应助xuan采纳,获得10
11秒前
11秒前
12秒前
小瑞完成签到,获得积分10
13秒前
HCKACECE发布了新的文献求助10
13秒前
星辰大海应助77采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得30
13秒前
YZH应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得30
14秒前
子车茗应助科研通管家采纳,获得30
14秒前
小青椒应助<・)))><<采纳,获得60
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得30
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640