Hierarchical Prototype Refinement with Progressive Inter-categorical Discrimination Maximization for Few-shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kyhappy_2002完成签到 ,获得积分10
2秒前
2秒前
ED应助xxz采纳,获得10
2秒前
疯子发布了新的文献求助10
2秒前
3秒前
3秒前
充电宝应助HM采纳,获得10
3秒前
4秒前
春华秋实完成签到,获得积分10
4秒前
云祱发布了新的文献求助10
4秒前
LYchem完成签到,获得积分10
4秒前
希望天下0贩的0应助果实采纳,获得10
6秒前
无花果应助别偷我增肌粉采纳,获得10
7秒前
伶俐绿柏发布了新的文献求助10
8秒前
英俊的铭应助云祱采纳,获得10
8秒前
kiki发布了新的文献求助10
9秒前
甜甜圈发布了新的文献求助10
9秒前
上官若男应助卓聪健采纳,获得10
9秒前
10秒前
痕丶歆完成签到 ,获得积分10
11秒前
11秒前
赛因斯完成签到,获得积分10
12秒前
xxz完成签到,获得积分10
13秒前
wenhao完成签到,获得积分10
13秒前
852应助kiki采纳,获得10
16秒前
温暖砖头完成签到,获得积分10
16秒前
长情尔曼完成签到,获得积分10
16秒前
searchforpaper完成签到 ,获得积分10
16秒前
17秒前
现实的面包完成签到,获得积分10
19秒前
serpant完成签到,获得积分10
19秒前
19秒前
SYLH应助长情尔曼采纳,获得10
20秒前
21秒前
谦让文昊完成签到,获得积分10
21秒前
樱桃小贩完成签到,获得积分10
21秒前
收声发布了新的文献求助10
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150