亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Prototype Refinement with Progressive Inter-categorical Discrimination Maximization for Few-shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到 ,获得积分10
5秒前
24秒前
25秒前
熊啊发布了新的文献求助10
31秒前
lj发布了新的文献求助10
33秒前
Ava应助krajicek采纳,获得10
33秒前
NexusExplorer应助熊啊采纳,获得10
40秒前
lj完成签到,获得积分10
41秒前
46秒前
krajicek发布了新的文献求助10
51秒前
排骨大王完成签到,获得积分10
51秒前
1分钟前
1分钟前
灵巧灵松发布了新的文献求助10
1分钟前
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
1分钟前
熊啊发布了新的文献求助10
1分钟前
1分钟前
2分钟前
Hello应助梦想家采纳,获得10
2分钟前
bocky完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
h0jian09完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Akim应助krajicek采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
krajicek发布了新的文献求助30
4分钟前
4分钟前
Frank完成签到,获得积分10
5分钟前
5分钟前
5分钟前
norberta发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874