Hierarchical Prototype Refinement With Progressive Inter-Categorical Discrimination Maximization for Few-Shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3414-3429 被引量:18
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助aa121599采纳,获得10
3秒前
33应助aa121599采纳,获得10
3秒前
4秒前
浮游应助ll采纳,获得10
4秒前
wk关注了科研通微信公众号
6秒前
6秒前
7秒前
8秒前
keyan123发布了新的文献求助10
8秒前
10秒前
10秒前
DARKNESS完成签到,获得积分10
12秒前
田浩完成签到,获得积分10
13秒前
14秒前
ao123发布了新的文献求助30
14秒前
liao完成签到 ,获得积分10
15秒前
77发布了新的文献求助10
15秒前
15秒前
ZR666888完成签到,获得积分10
15秒前
坦率抽屉发布了新的文献求助10
17秒前
17秒前
韩恩轩发布了新的文献求助10
19秒前
结实的蘑菇完成签到 ,获得积分10
19秒前
19秒前
萧寒发布了新的文献求助10
22秒前
Verity应助张zhang采纳,获得10
22秒前
23秒前
24秒前
25秒前
27秒前
fanfan完成签到 ,获得积分10
27秒前
我是老大应助一蓑烟雨1122采纳,获得10
29秒前
wk发布了新的文献求助10
30秒前
阳光发布了新的文献求助10
31秒前
白子双发布了新的文献求助10
32秒前
32秒前
研友_VZG7GZ应助极电采纳,获得10
33秒前
34秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915