亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Prototype Refinement With Progressive Inter-Categorical Discrimination Maximization for Few-Shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3414-3429 被引量:18
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
25秒前
拿起蜡笔小新完成签到 ,获得积分10
29秒前
43秒前
46秒前
50秒前
lazysheep关注了科研通微信公众号
50秒前
52秒前
53秒前
1分钟前
闪闪的梦柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助gbb采纳,获得10
1分钟前
1分钟前
树洞里的刺猬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Cherish发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
执着的怜寒完成签到 ,获得积分10
2分钟前
情怀应助东京今夜下雪采纳,获得10
2分钟前
2分钟前
ANG完成签到 ,获得积分10
2分钟前
2分钟前
直率三问完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
jim完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
以七完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549