A novel network traffic combination prediction model

计算机科学 超参数 残余物 组分(热力学) 数据挖掘 贝叶斯网络 交通生成模型 网络模型 人工智能 机器学习 算法 实时计算 热力学 物理
作者
Zhongda Tian,Pengfei Song
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:35 (7) 被引量:9
标识
DOI:10.1002/dac.5097
摘要

Summary Network has become an indispensable part of public life. To improve network utilization, network performance, network quality, and enhance network security, precise prediction of network traffic is an indispensable method and basis for solving the above problems. In order to accurately predict the network traffic, a novel combination prediction model for network traffic is proposed. In this model, local mean decomposition (LMD), bidirectional long short‐term memory (BiLSTM), and Bayesian optimization algorithm are combined. First, the LMD method decomposes the network traffic time series to obtain several product function (PF) components and a residual by LMD. Then, each PF component and residual is predicted with BiLSTM model. Meanwhile, the Bayesian optimization algorithm is introduced to optimize the hyperparameters of BiLSTM. Finally, the predicted value of each PF component and residual is linearly superimposed to obtain the final predicted value. Through the study of two groups of actual network traffic datasets and compared with a variety of state‐of‐the‐art prediction models, the proposed model has a preferable prediction results by comparison of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜圈发布了新的文献求助10
刚刚
Zr97完成签到,获得积分10
1秒前
王大壮完成签到,获得积分10
1秒前
小二郎应助漫栀采纳,获得10
3秒前
打打应助美味的薯片采纳,获得10
4秒前
4秒前
5秒前
赘婿应助cjchem采纳,获得10
5秒前
6秒前
小蘑菇应助清蒸鱼采纳,获得10
8秒前
9秒前
麦子发布了新的文献求助10
9秒前
10秒前
10秒前
花笙给花笙的求助进行了留言
10秒前
11秒前
鸸蓝完成签到,获得积分10
11秒前
dongan发布了新的文献求助10
11秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
jojodan应助科研通管家采纳,获得10
12秒前
研友_alan应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
DijiaXu应助科研通管家采纳,获得40
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
WWUUUU完成签到,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
研友_alan应助科研通管家采纳,获得10
13秒前
13秒前
科研助手6应助科研通管家采纳,获得50
14秒前
研友_Zb17ln发布了新的文献求助10
14秒前
小马过河应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070