A fuzzy mathematical model for tumor growth pattern using generalized Hukuhara derivative and its numerical analysis

模糊逻辑 数学 应用数学 常微分方程 模棱两可 投影(关系代数) 微分方程 数学模型 计算机科学 数学优化 算法 数学分析 人工智能 程序设计语言 统计
作者
Rubeena Khaliq,Pervaiz Iqbal,Shahid Ahmad Bhat,Aadil Rashid Sheergojri
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:118: 108467-108467 被引量:5
标识
DOI:10.1016/j.asoc.2022.108467
摘要

Fuzzy mathematical modeling has been extensively used in recent years as a helpful tool to achieve a stronger and broader understanding of a specific biological topic such as cancer. The Fuzzy mathematical model allows one to analyze the structure both qualitatively and quantitatively using mathematical methods and clarifies a tool for observing the results of different components and making behavioral projection. To reduce the ambiguity of model parameters, a fuzzy environment has been designed to address a more accurate mathematical tumor growth model. The complete pattern of tumor growth mechanism is captured with the fuzzy mathematical model using fuzzy differential equation. The concept of Generalized Hukuhara derivative is used to transform the differential equation into a system of two ordinary differential equations. The numerical simulation has also been given to support the mathematical tumor growth model in a fuzzy environment. • The exponential, logistic, and Gompertz model in tumor growth is formulated under fuzzy environment. • The coefficient, initial condition, and both of the models are taken as fuzzy numbers. • The generalized Hukuhara differentiability concept which is a powerful method of the derivative is used for analyzing the model. • Numerical simulation using MATLAB software is used to support this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tamato发布了新的文献求助20
3秒前
深情映冬发布了新的文献求助10
3秒前
负责的太兰完成签到,获得积分10
4秒前
4秒前
韩soso发布了新的文献求助10
5秒前
无花果应助da采纳,获得10
5秒前
无奈斑马完成签到,获得积分10
5秒前
6秒前
6秒前
田様应助kaka091采纳,获得10
7秒前
7秒前
8秒前
8秒前
duosu完成签到,获得积分10
8秒前
机智的笑槐应助yao采纳,获得10
9秒前
11发布了新的文献求助10
9秒前
聪明无敌小腚宝完成签到,获得积分10
9秒前
所所应助didoo采纳,获得10
11秒前
小蘑菇应助狂野大雄鹰采纳,获得10
11秒前
库昊的假粉丝应助duosu采纳,获得30
11秒前
聪慧雪糕发布了新的文献求助10
11秒前
所所应助11采纳,获得10
11秒前
Lucas应助追求科研的小白采纳,获得10
15秒前
16秒前
iVANPENNY应助zhl采纳,获得20
16秒前
风feng完成签到,获得积分10
16秒前
陈敏发布了新的文献求助10
16秒前
NXZNXZ完成签到 ,获得积分10
17秒前
17秒前
zxy关注了科研通微信公众号
19秒前
20秒前
20秒前
22秒前
高挑的导师完成签到 ,获得积分10
22秒前
赵先森发布了新的文献求助10
22秒前
米粥饭完成签到,获得积分10
24秒前
Orgcao完成签到,获得积分10
24秒前
乐乐应助薛定谔的猫采纳,获得10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147