Two-Stage Supervised Discrete Hashing for Cross-Modal Retrieval

动态完美哈希 散列函数 双重哈希 特征哈希 通用哈希 计算机科学 局部敏感散列 二进制代码 哈希表 量化(信号处理) 判别式 理论计算机科学 汉明空间 与K无关的哈希 二进制数 离散优化 模式识别(心理学) 人工智能 算法 汉明码 最优化问题 数学 区块代码 解码方法 计算机安全 算术
作者
Donglin Zhang,Xiao-Jun Wu,Tianyang Xu,Josef Kittler
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 7014-7026 被引量:8
标识
DOI:10.1109/tsmc.2021.3130939
摘要

Recently, hashing-based multimodal learning systems have received increasing attention due to their query efficiency and parsimonious storage costs. However, impeded by the quantization loss caused by numerical optimization, the existing cross-media hashing approaches are unable to capture all the discriminative information present in the original multimodal data. Besides, most cross-modal methods belong to the one-step paradigm, which learn the binary codes and hash function simultaneously, increasing the complexity of optimization. To address these issues, we propose a novel two-stage approach, named the two-stage supervised discrete hashing (TSDH) method. In particular, in the first phase, TSDH generates a latent representation for each modality. These representations are then mapped to a common Hamming space to generate the binary codes. In addition, TSDH directly endows the hash codes with the semantic labels, enhancing the discriminatory power of the learned binary codes. A discrete hash optimization approach is developed to learn the binary codes without relaxation, avoiding the large quantization loss. The proposed hash function learning scheme reuses the semantic information contained by the embeddings, endowing the hash functions with enhanced discriminability. Extensive experiments on several databases demonstrate the effectiveness of the developed TSDH, outperforming several recent competitive cross-media algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助高不二采纳,获得10
1秒前
丘比特应助styz11采纳,获得10
2秒前
Alvin完成签到,获得积分10
2秒前
yoke发布了新的文献求助10
3秒前
3秒前
星辰大海应助酸柠檬本檬采纳,获得10
3秒前
狂野书易完成签到 ,获得积分10
4秒前
4秒前
5秒前
十三客完成签到,获得积分10
5秒前
研友_VZG7GZ应助雷若山采纳,获得10
6秒前
上官若男应助charles采纳,获得10
7秒前
JamesPei应助奋斗的紫易采纳,获得10
7秒前
曾瀚宇完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
10秒前
12秒前
12秒前
白糖完成签到,获得积分10
13秒前
13秒前
xx完成签到,获得积分10
13秒前
欣慰的水瑶完成签到,获得积分10
14秒前
高不二发布了新的文献求助10
15秒前
16秒前
16秒前
ma_yuru完成签到,获得积分10
16秒前
17秒前
牛碧菡发布了新的文献求助10
17秒前
19秒前
岑梨愁发布了新的文献求助10
19秒前
NexusExplorer应助明理的依柔采纳,获得10
19秒前
8R60d8应助12321234采纳,获得10
20秒前
柯一一应助12321234采纳,获得10
20秒前
宋如风完成签到,获得积分10
21秒前
ma_yuru发布了新的文献求助10
21秒前
科研辣椒发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719