亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey

鉴别器 计算机科学 图像翻译 深度学习 人工智能 领域(数学分析) 发电机(电路理论) 特征(语言学) 图像(数学) 数学 探测器 物理 数学分析 哲学 电信 功率(物理) 量子力学 语言学
作者
Aram You,Jin Kuk Kim,Ik Hee Ryu,Tae Keun Yoo
出处
期刊:Eye and vision [BioMed Central]
卷期号:9 (1) 被引量:117
标识
DOI:10.1186/s40662-022-00277-3
摘要

Abstract Background Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthalmology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the application of GAN in ophthalmology image domains to discuss important contributions and to identify potential future research directions. Methods We performed a survey on studies using GAN published before June 2021 only, and we introduced various applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the usefulness of the GAN. Results In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns. Conclusions The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with deep learning classification techniques because several problems need to be overcome for practical use. However, the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the performance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique to maximize the potential of ophthalmology datasets for deep learning research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的访梦完成签到,获得积分10
16秒前
23秒前
量子星尘发布了新的文献求助150
29秒前
43秒前
Demi_Ming完成签到,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
2分钟前
学不完了完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助焦糖玛奇朵采纳,获得10
2分钟前
2分钟前
Ldq应助科研通管家采纳,获得10
2分钟前
3分钟前
Sandy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
焦糖玛奇朵完成签到,获得积分10
3分钟前
4分钟前
4分钟前
lvpori发布了新的文献求助30
4分钟前
伏城完成签到 ,获得积分10
4分钟前
lvpori完成签到,获得积分10
4分钟前
赘婿应助su采纳,获得10
4分钟前
小马甲应助qqqq采纳,获得10
4分钟前
4分钟前
4分钟前
qqqq发布了新的文献求助10
4分钟前
Ldq应助科研通管家采纳,获得10
4分钟前
在水一方应助qqqq采纳,获得10
4分钟前
5分钟前
CRUSADER完成签到,获得积分10
5分钟前
博ge完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
慢跑跑不动的肥仔完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064470
求助须知:如何正确求助?哪些是违规求助? 4287518
关于积分的说明 13359099
捐赠科研通 4106033
什么是DOI,文献DOI怎么找? 2248371
邀请新用户注册赠送积分活动 1253912
关于科研通互助平台的介绍 1185234