Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey

鉴别器 计算机科学 图像翻译 深度学习 人工智能 领域(数学分析) 发电机(电路理论) 特征(语言学) 图像(数学) 数学 探测器 物理 数学分析 哲学 电信 功率(物理) 量子力学 语言学
作者
Aram You,Jin Kuk Kim,Ik Hee Ryu,Tae Keun Yoo
出处
期刊:Eye and vision [BioMed Central]
卷期号:9 (1) 被引量:117
标识
DOI:10.1186/s40662-022-00277-3
摘要

Abstract Background Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthalmology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the application of GAN in ophthalmology image domains to discuss important contributions and to identify potential future research directions. Methods We performed a survey on studies using GAN published before June 2021 only, and we introduced various applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the usefulness of the GAN. Results In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns. Conclusions The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with deep learning classification techniques because several problems need to be overcome for practical use. However, the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the performance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique to maximize the potential of ophthalmology datasets for deep learning research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
台灯没电了完成签到,获得积分10
刚刚
氯化钡完成签到 ,获得积分10
刚刚
啥也不会完成签到,获得积分10
2秒前
燕子发布了新的文献求助30
2秒前
Ximeng李1128完成签到,获得积分10
3秒前
5秒前
mayisang完成签到,获得积分10
5秒前
5秒前
寒冷的灵完成签到,获得积分10
5秒前
爆米花应助无情的宛儿采纳,获得20
6秒前
不懈奋进应助现代的傻姑采纳,获得30
7秒前
活ni的pig完成签到 ,获得积分10
7秒前
花生仔应助大象放冰箱采纳,获得10
7秒前
8秒前
nanfang完成签到 ,获得积分10
9秒前
liuzhanyu发布了新的文献求助10
9秒前
温暖宛筠发布了新的文献求助10
9秒前
111完成签到 ,获得积分10
12秒前
12秒前
波比不菜完成签到,获得积分10
12秒前
英俊的铭应助ZZZ333采纳,获得10
13秒前
13秒前
领导范儿应助过时的秋尽采纳,获得10
13秒前
dddd发布了新的文献求助30
13秒前
HtheJ完成签到,获得积分10
14秒前
11完成签到,获得积分10
14秒前
加菲猫完成签到,获得积分10
14秒前
燕子完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
李晓凤发布了新的文献求助10
16秒前
16秒前
我嘞个豆应助积极的如之采纳,获得10
18秒前
在水一方应助dddd采纳,获得30
19秒前
echo发布了新的文献求助10
19秒前
Akim应助cjh采纳,获得10
20秒前
YQ57发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993