Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey

鉴别器 计算机科学 图像翻译 深度学习 人工智能 领域(数学分析) 发电机(电路理论) 特征(语言学) 图像(数学) 数学 探测器 物理 数学分析 哲学 电信 功率(物理) 量子力学 语言学
作者
Aram You,Jin Kuk Kim,Ik Hee Ryu,Tae Keun Yoo
出处
期刊:Eye and vision [Springer Nature]
卷期号:9 (1) 被引量:117
标识
DOI:10.1186/s40662-022-00277-3
摘要

Abstract Background Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthalmology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the application of GAN in ophthalmology image domains to discuss important contributions and to identify potential future research directions. Methods We performed a survey on studies using GAN published before June 2021 only, and we introduced various applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the usefulness of the GAN. Results In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns. Conclusions The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with deep learning classification techniques because several problems need to be overcome for practical use. However, the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the performance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique to maximize the potential of ophthalmology datasets for deep learning research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇儿发布了新的文献求助10
刚刚
cc2941完成签到,获得积分10
刚刚
看不懂完成签到,获得积分10
刚刚
哈哈哈完成签到,获得积分10
刚刚
大卫在分享完成签到,获得积分0
1秒前
ming完成签到,获得积分10
2秒前
一叶舟完成签到,获得积分10
2秒前
乐观的凌兰完成签到 ,获得积分10
2秒前
Aurora完成签到 ,获得积分10
3秒前
3秒前
子铭完成签到,获得积分10
3秒前
自由饼干完成签到,获得积分10
4秒前
Tom完成签到,获得积分10
4秒前
4秒前
zero完成签到,获得积分10
5秒前
科研通AI2S应助cc2941采纳,获得10
5秒前
Airhug完成签到 ,获得积分10
6秒前
Hina完成签到,获得积分10
6秒前
孟严青完成签到,获得积分10
6秒前
团团团完成签到 ,获得积分10
7秒前
陨落的繁星完成签到,获得积分10
7秒前
闹一闹吧费曼先生完成签到 ,获得积分10
7秒前
独特乘风完成签到,获得积分10
8秒前
何晓俊发布了新的文献求助10
10秒前
大喇叭啦啦啦完成签到,获得积分10
11秒前
11秒前
159完成签到,获得积分10
12秒前
yxy完成签到,获得积分10
12秒前
12秒前
碧蓝曼冬完成签到 ,获得积分10
14秒前
十八完成签到 ,获得积分10
16秒前
Chanpi完成签到,获得积分10
16秒前
典雅的太阳完成签到,获得积分10
16秒前
满意听白完成签到 ,获得积分10
17秒前
Lucas应助苹果采纳,获得10
17秒前
tianji发布了新的文献求助10
17秒前
dcc完成签到,获得积分10
17秒前
子寒完成签到,获得积分10
18秒前
Coldpal完成签到,获得积分10
18秒前
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954