Machine learning prediction of lignin content in poplar with Raman spectroscopy

木质素 拉曼光谱 预测建模 人工智能 正规化(语言学) 机器学习 计算机科学 生物系统 模式识别(心理学) 化学 物理 生物 光学 有机化学
作者
Wenli Gao,Liang Zhou,Shengquan Liu,Ying Guan,Hui Gao,Bin Hui
出处
期刊:Bioresource Technology [Elsevier]
卷期号:348: 126812-126812 被引量:78
标识
DOI:10.1016/j.biortech.2022.126812
摘要

Based on features extracted from Raman spectra, regularization algorithms, SVR, DT, RF, LightGBM, CatBoost, and XGBoost were used to develop prediction models for lignin content in poplar. Firstly, Raman features extracted from FT-Raman spectra after data processing were used as input of models and determined lignin contents were output. Secondly, grid-search combined with cross-validation was used to adjust the hyper-parameters of models. Finally, the predictive models were built by aforementioned algorithms. The results indicated regularization algorithms, SVR, DT held test R2 were >0.80 which means the predictive values from model still deviate from measured ones. Meanwhile, RF, LightGBM, CatBoost, and XGBoost were better than above algorithms, and their test R2 were >0.91 which suggesting the predictive values was nearly close to measured ones. Therefore, fast and accurate methods for predicting lignin content were obtained and will be useful for screening suitable lignocellulosic resource with expected lignin content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
屿yu完成签到,获得积分10
1秒前
1秒前
寒鸦应助熊研研采纳,获得30
2秒前
2秒前
科研通AI6应助乐观的语山采纳,获得10
3秒前
苗苗王完成签到,获得积分10
3秒前
赵晶晶完成签到,获得积分10
3秒前
4秒前
4秒前
歼击机88发布了新的文献求助10
5秒前
大力出奇迹完成签到,获得积分10
5秒前
希望天下0贩的0应助lx123采纳,获得10
5秒前
5秒前
詹慧子完成签到,获得积分20
5秒前
5秒前
6秒前
LeoXu完成签到,获得积分10
6秒前
7秒前
青梅煮酒完成签到,获得积分10
7秒前
芈冖完成签到,获得积分10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
7秒前
寒鸦应助熊研研采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
hzy6688完成签到,获得积分10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
null应助科研通管家采纳,获得50
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513