Abstract LB113: Genomic classification to refine prognosis in clear cell renal cell carcinoma

BAP1型 肾透明细胞癌 肾细胞癌 肿瘤科 比例危险模型 医学 队列 内科学 肾癌 清除单元格 生存分析 癌症 生物信息学 生物
作者
Kate I. Glennon,Naveen S. Vasudev,Ghislaine Scélo,Michelle Wilson,Louis Létourneau,Robert Eveleigh,Nazanin Nourbehesht,Madeleine Arseneault,Antoine Paccard,Lars Egevad,Juris Vīksna,Edgars Celms,Sharon M. Jackson,Behnoush Abedi‐Ardekani,Anne Y. Warren,Peter J. Selby,Sebastian Trainor,Michael Kimuli,Naeem Soomro,Adebanji Adeyoju,Poulam M. Patel,Magdalena B. Wozniak,Ivana Holcátová,A. Brisuda,Vladimí­r Janout,Estelle Chanudet,Давид Заридзе,Anush Moukeria,Oxana Shangina,Lenka Foretová,Marie Navrátilová,Dana Mateș,Viorel Jinga,Ljiljana Bogdanović,Božidar Kovačević,Anne Cambon‐Thomsen,Guillaume Bourque,Alvis Brāzma,Jörg Tost,Paul Brennan,Mark Lathrop,Yasser Riazalhosseini,Rosamonde E. Banks
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (12_Supplement): LB113-LB113
标识
DOI:10.1158/1538-7445.am2022-lb113
摘要

Abstract Renal cell carcinomas (RCC) are characterized by their heterogenous clinical outcomes, and due to their indeterminate behavior and the absence of routine biomarkers, it is difficult to identify patients who are at high-risk for relapse after curative nephrectomy. To identify genomic biomarkers for clear cell RCC (ccRCC) risk-stratification we interrogated somatic mutation status of 12 RCC-relevant genes using next-generation sequencing (NGS) in tumor-normal pairs from 943 patients with matched follow up data from the Cancer Genomics of the Kidney (CAGEKID) study. We examined associations between genomically-defined patient groups, explained below, and disease-free as well as RCC-specific survival independently in two cohorts of patients (N=469 for cohort 1; 474 for cohort 2). We used the Kaplan-Meier method with log-rank tests to compare survival functions, and Cox proportional hazards models to stratify for patient stage and age to estimate association of each group with survival. RCC-specific survival was assessed with a competing-risks method to include deaths from other causes. Within these cohorts, 76.4% of patients harbored somatic mutations in VHL, the most common driver gene in ccRCC. The most commonly mutated genes within VHL-mutated tumors were PBRM1 (39.7%), SETD2 (19%), BAP1 (14.3%), and KDM5C (8.3%). Less frequently mutated genes included ATM, COL11A1, DMD, TP53, and TRRAP (~3-5%).Among VHL-driven tumors, we identified a new genomic classifier on the basis of the number of mutations in additional RCC driver genes in the panel examined. Patients were classified based on the presence of mutations only in VHL (VHL+0), those with mutations in VHL and one other driver gene (VHL+1), two other driver genes (VHL+2), and 3 or more other driver genes (VHL≥3). We observed within both cohorts that both the risk of disease recurrence as well as RCC-specific death were associated with an increased number of mutations within this classification. When stratified for patient stage and age, the hazard-ratio for 5-year disease-free survival for VHL≥3 patients was 6.69 (p=0.000212), 4.31 for VHL+2 (p=0.000862), and 2.43 for VHL+1 (p=0.035662), compared to patients with only mutations in VHL. These observations were replicated in the second patient cohort, with hazards ratios of 4.55, 2.49, and 1.40, for VHL≥3, VHL+2, and VHL+1 classified patients respectively, indicating that risk of disease recurrence increases with the number of driver mutations. Notably, tumor mutational burden (TMB) was not significantly different between the aforementioned groups, demonstrating that our classifier is independent of TMB. We created a model based on a set of 12 RCC-relevant genes, which can predict risk of relapse for the ~80% of patients with ccRCC that are VHL-driven. This classification can be defined based on a small panel of genes, making it easily applicable to the clinic, in the context of tumor or liquid biopsy analysis. Citation Format: Kate I. Glennon, Naveen S. Vasudev, Ghislaine Scelo, Michelle Wilson, Louis Letourneau, Robert Eveleigh, Nazanin Nourbehesht, Madeleine Arseneault, Antoine Paccard, Lars Egevad, Juris Viksna, Edgars Celms, Sharon M. Jackson, Behnoush Abedi-Ardekani, Anne Y. Warren, Peter J. Selby, Sebastian Trainor, Michael Kimuli, Naeem Soomro, Adebanji Adeyoju, Poulam Patel, Magdalena B. Wozniak, Ivana Holcatova, Antonin Brisuda, Vladimir Janout, Estelle Chanudet, David Zaridze, Anush Moukeria, Oxana Shangina, Lenka Foretova, Marie Navratilova, Dana Mates, Viorel Jinga, Ljiljana Bogdanovic, Bozidar Kovacevic, Anne Cambon-Thomsen, Guillaume Bourque, Alvis Brazma, Jörg Tost, Paul Brennan, Mark Lathrop, Yasser Riazalhosseini, Rosamonde E. Banks. Genomic classification to refine prognosis in clear cell renal cell carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB113.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qls完成签到,获得积分10
1秒前
caas6发布了新的文献求助30
1秒前
1秒前
子春二杦发布了新的文献求助10
2秒前
ertredffg发布了新的文献求助10
2秒前
samurai发布了新的文献求助10
3秒前
stan发布了新的文献求助10
3秒前
3秒前
3秒前
兴奋大马喽完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
4秒前
5秒前
XZM完成签到,获得积分10
5秒前
Lilian发布了新的文献求助10
5秒前
十戈橙发布了新的文献求助10
5秒前
6秒前
LeeXg完成签到,获得积分10
6秒前
7秒前
changping应助小橘采纳,获得30
7秒前
汤汤完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助啊哈哈哈采纳,获得10
8秒前
鱼生完成签到,获得积分10
8秒前
干净绮烟完成签到,获得积分10
8秒前
8秒前
852应助SunnyZjw采纳,获得10
8秒前
Minty完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
片刻窘境发布了新的文献求助10
9秒前
9秒前
wxyshare举报spring求助涉嫌违规
10秒前
10秒前
10秒前
10秒前
大气的杨完成签到 ,获得积分10
10秒前
11秒前
汤汤发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987