已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncertainty-guided man–machine integrated patient-specific quality assurance

计算机科学 校准 质量保证 人工智能 随机森林 贝叶斯推理 贝叶斯概率 机器学习 统计 医学 数学 外部质量评估 病理
作者
Xiaoyu Yang,Shuzhou Li,Qigang Shao,Ying Cao,Zhèn Yáng,Yuqian Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:173: 1-9 被引量:16
标识
DOI:10.1016/j.radonc.2022.05.016
摘要

Purpose Providing the confidence level (Uncertainty) of prediction results and guiding patient-specific quality assurance (pQA) can enhance the safety of AI (Artificial intelligence)-based automatic pQA models. However, even state-of-the-art automatic pQA models can only predict the gamma passing rate (GPR) and cannot quantify the prediction uncertainty, limiting the safe clinical translation of these models. This study aims to develop an uncertainty-guided man–machine integrated pQA (UgMi-pQA) method to address this issue. Methods An uncertainty-aware dual-task deep learning (UDDL) model, combined with an interwoven training method and Monte Carlo dropout approximation Bayesian inference, to enable simultaneous output of the predicted GPR and corresponding total prediction uncertainty to guide pQA. 1541 pairs of field fluences and GPRs collected from 165 glioma, 50 lung (conventional fractionation), and 20 liver cases were separated for the UDDL model training, validation, calibration, and test in a ratio of 7:1:1:1, respectively. Furthermore, 413 pairs of fluences and GPRs collected from 12 breast, 10 cervix, 9 esophagus, 8 tongue, and 12 lung SBRT cases were gathered for the out-of-distribution (OOD) detection. Results Clinical accuracy of 100.0% was reached with only 61.7% of the workload. Samples with substantial prediction errors and failed samples with low label GPR (<95%) could be successfully screened out. The capability ranges of two different models were both successfully identified with the prediction uncertainty significantly larger for OOD samples than for in-distribution samples (p < 0.01). Conclusion This study presents the first work on uncertainty quantification for deep learning automatic pQA tasks. The UgMi-pQA method can balance the efficiency and safety of the automatic pQA models and promote their clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的蛟凤完成签到,获得积分10
1秒前
1秒前
洞两发布了新的文献求助10
3秒前
4秒前
Moomba完成签到 ,获得积分10
6秒前
205完成签到 ,获得积分10
6秒前
xixi发布了新的文献求助30
7秒前
TCMning发布了新的文献求助10
7秒前
汤姆完成签到,获得积分10
9秒前
合适尔蝶发布了新的文献求助10
9秒前
wx关注了科研通微信公众号
11秒前
icelatte完成签到,获得积分10
12秒前
129完成签到 ,获得积分10
13秒前
14秒前
ding应助Jamestangbw采纳,获得10
14秒前
15秒前
思源应助tiri采纳,获得10
16秒前
乐乐应助勤能补拙采纳,获得10
18秒前
仲秋二三应助善良又亦采纳,获得10
18秒前
Ava应助CNS_Fighter88采纳,获得10
18秒前
WangLu2025完成签到 ,获得积分10
19秒前
tuanheqi应助上楼都费劲采纳,获得80
19秒前
lilin完成签到,获得积分10
19秒前
虔三愿发布了新的文献求助10
20秒前
22秒前
轻松的小海豚完成签到 ,获得积分10
22秒前
27秒前
27秒前
30秒前
X先生完成签到 ,获得积分10
30秒前
虚心的芹发布了新的文献求助10
30秒前
科研通AI6应助杭谷波采纳,获得10
31秒前
32秒前
山与发布了新的文献求助10
33秒前
CNS_Fighter88发布了新的文献求助10
34秒前
pcr163应助沉静问芙采纳,获得200
34秒前
37秒前
39秒前
aniver完成签到,获得积分10
39秒前
Eureka完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356