Uncertainty-guided man–machine integrated patient-specific quality assurance

计算机科学 校准 质量保证 人工智能 随机森林 贝叶斯推理 贝叶斯概率 机器学习 统计 医学 数学 外部质量评估 病理
作者
Xiaoyu Yang,Shuzhou Li,Qigang Shao,Ying Cao,Zhèn Yáng,Yuqian Zhao
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:173: 1-9 被引量:16
标识
DOI:10.1016/j.radonc.2022.05.016
摘要

Purpose Providing the confidence level (Uncertainty) of prediction results and guiding patient-specific quality assurance (pQA) can enhance the safety of AI (Artificial intelligence)-based automatic pQA models. However, even state-of-the-art automatic pQA models can only predict the gamma passing rate (GPR) and cannot quantify the prediction uncertainty, limiting the safe clinical translation of these models. This study aims to develop an uncertainty-guided man–machine integrated pQA (UgMi-pQA) method to address this issue. Methods An uncertainty-aware dual-task deep learning (UDDL) model, combined with an interwoven training method and Monte Carlo dropout approximation Bayesian inference, to enable simultaneous output of the predicted GPR and corresponding total prediction uncertainty to guide pQA. 1541 pairs of field fluences and GPRs collected from 165 glioma, 50 lung (conventional fractionation), and 20 liver cases were separated for the UDDL model training, validation, calibration, and test in a ratio of 7:1:1:1, respectively. Furthermore, 413 pairs of fluences and GPRs collected from 12 breast, 10 cervix, 9 esophagus, 8 tongue, and 12 lung SBRT cases were gathered for the out-of-distribution (OOD) detection. Results Clinical accuracy of 100.0% was reached with only 61.7% of the workload. Samples with substantial prediction errors and failed samples with low label GPR (<95%) could be successfully screened out. The capability ranges of two different models were both successfully identified with the prediction uncertainty significantly larger for OOD samples than for in-distribution samples (p < 0.01). Conclusion This study presents the first work on uncertainty quantification for deep learning automatic pQA tasks. The UgMi-pQA method can balance the efficiency and safety of the automatic pQA models and promote their clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源味盐悦完成签到 ,获得积分20
4秒前
大模型应助专注背包采纳,获得10
4秒前
科研狂人发布了新的文献求助10
6秒前
Ava应助Agamemnon采纳,获得10
6秒前
路路有为完成签到 ,获得积分10
7秒前
juziyaya应助zhaoaotao采纳,获得30
7秒前
7秒前
8秒前
ShiyuZuo应助鹏826采纳,获得10
9秒前
11秒前
520完成签到,获得积分10
12秒前
异梦发布了新的文献求助10
13秒前
iW完成签到 ,获得积分10
14秒前
我是中国人完成签到,获得积分10
14秒前
15秒前
无辜的尔烟完成签到,获得积分20
17秒前
追寻砖家完成签到 ,获得积分10
19秒前
hanhan发布了新的文献求助10
21秒前
22秒前
MG完成签到,获得积分10
25秒前
科研通AI2S应助牧羊人采纳,获得30
27秒前
Munsey给Munsey的求助进行了留言
28秒前
wswwsw完成签到,获得积分10
28秒前
30秒前
zxc完成签到,获得积分10
31秒前
努力的小狗屁应助聪聪采纳,获得10
31秒前
科研通AI2S应助wswwsw采纳,获得10
32秒前
zw完成签到,获得积分10
32秒前
genomed应助zhaobo采纳,获得10
32秒前
哇咔咔完成签到 ,获得积分10
32秒前
你好完成签到,获得积分20
33秒前
33秒前
Jiaowen发布了新的文献求助10
35秒前
徐璟发布了新的文献求助10
36秒前
謝昂佑完成签到,获得积分20
37秒前
crebHuman发布了新的文献求助10
37秒前
小杨完成签到,获得积分10
37秒前
杜亚完成签到,获得积分10
37秒前
maox1aoxin应助vicky采纳,获得60
39秒前
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245744
求助须知:如何正确求助?哪些是违规求助? 2889446
关于积分的说明 8258420
捐赠科研通 2557794
什么是DOI,文献DOI怎么找? 1386625
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626675