Multi-objective optimisation of machining process parameters using deep learning-based data-driven genetic algorithm and TOPSIS

机械加工 托普西斯 遗传算法 过程(计算) 数学优化 帕累托原理 计算机科学 选择(遗传算法) 集合(抽象数据类型) 工程类 算法 机器学习 机械工程 数学 运筹学 操作系统 程序设计语言
作者
Pengcheng Wu,He Yan,Yufeng Li,Jingsen He,Xueqian Liu,Yulin Wang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:64: 40-52 被引量:61
标识
DOI:10.1016/j.jmsy.2022.05.016
摘要

Machining process is currently widely employed in mechanical manufacturing systems. Optimum selection of machining process parameters can improve the environmental impact and production efficiency of the machining process effectively. However, existing studies toward machining process parameters optimisation are focusing on computationally expensive numerical simulations and costly physical models, which are inefficient and labor-expensive. Moreover, the numerical simulations and physical models often show an unsatisfactory accuracy in the actual exploitation stage, which would make the final optimisation solution cannot achieve the best optimum results. Therefore, this paper proposes a deep learning based data-driven genetic algorithm and TOPSIS for multi objective optimisation of machining process parameters and searching the final solutions. First, deep learning is employed in this paper to automatically develop the data-driven prediction function of different optimized objectives. Then the developed optimized objective prediction function is converted into the surrogate model and integrated with the genetic algorithm for generating the Pareto set. Finally, the TOPSIS is employed to automatically search the best optimum processing parameter from the generated Pareto set. The experiments conducted on a milling machine and the experimental results show that the proposed parameters selection method is feasible and effective, and it can effectively and adjustably help operators to realize a balance among the multiple different conflicting objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CodeCraft应助freedommm采纳,获得10
5秒前
Inanopig发布了新的文献求助10
6秒前
LYSM应助zzz采纳,获得20
6秒前
Jasper应助Ventus采纳,获得10
8秒前
薛定谔的猫应助幽默亦旋采纳,获得10
9秒前
5度转角应助从容的文涛采纳,获得10
11秒前
乐乐应助郭童谣采纳,获得10
12秒前
freedommm完成签到,获得积分10
13秒前
13秒前
健壮聪展完成签到,获得积分10
19秒前
ZJ发布了新的文献求助10
19秒前
chenqi完成签到,获得积分10
22秒前
周凡淇发布了新的文献求助10
23秒前
大模型应助yy采纳,获得10
25秒前
炙热尔阳完成签到 ,获得积分10
26秒前
27秒前
桐桐应助缥缈嫣采纳,获得10
30秒前
机灵采蓝发布了新的文献求助10
31秒前
31秒前
candice624完成签到 ,获得积分10
33秒前
33秒前
34秒前
寒冷兔子完成签到,获得积分10
34秒前
天明发布了新的文献求助10
37秒前
38秒前
周凡淇发布了新的文献求助10
38秒前
郭童谣发布了新的文献求助10
40秒前
诚心小懒虫完成签到,获得积分10
40秒前
42秒前
拉长的沛芹完成签到 ,获得积分10
44秒前
44秒前
44秒前
华仔应助wali采纳,获得10
46秒前
hageber完成签到,获得积分10
47秒前
天明完成签到,获得积分10
47秒前
smile发布了新的文献求助20
47秒前
田様应助雨点采纳,获得10
49秒前
卜卜脆完成签到,获得积分10
51秒前
Waney完成签到,获得积分10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358253
求助须知:如何正确求助?哪些是违规求助? 2981365
关于积分的说明 8698896
捐赠科研通 2662975
什么是DOI,文献DOI怎么找? 1458259
科研通“疑难数据库(出版商)”最低求助积分说明 675080
邀请新用户注册赠送积分活动 666100