Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers

肉眼 RGB颜色模型 检出限 人工智能 化学 每个符号的零件数 计算机科学 材料科学 机器学习 色谱法 有机化学
作者
Papaorn Siribunbandal,Yong‐Hoon Kim,Tanakorn Osotchan,Zhigang Zhu,Rawat Jaisutti
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (22): 18714-18721 被引量:11
标识
DOI:10.1021/acsomega.2c01419
摘要

Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助咿呀采纳,获得10
刚刚
刚刚
不许焦绿o完成签到,获得积分10
刚刚
zaman发布了新的文献求助10
1秒前
sandy发布了新的文献求助10
1秒前
认真的TOTORO完成签到,获得积分10
1秒前
华仔应助雷豪采纳,获得10
1秒前
2秒前
2秒前
3秒前
黒面包完成签到,获得积分10
4秒前
老白茶发布了新的文献求助10
5秒前
乐此不疲的猪完成签到,获得积分10
5秒前
纯真的元风完成签到,获得积分10
6秒前
6秒前
美满乌冬面完成签到,获得积分10
6秒前
大大大陌白完成签到,获得积分20
6秒前
song完成签到,获得积分10
6秒前
siijjfjjf发布了新的文献求助10
6秒前
包容友儿完成签到,获得积分10
6秒前
6秒前
LL发布了新的文献求助10
7秒前
7秒前
碧蓝曼安完成签到,获得积分10
7秒前
哈尼发布了新的文献求助20
8秒前
8秒前
豆豆完成签到,获得积分10
8秒前
8秒前
溫蒂应助kaven采纳,获得10
9秒前
浑天与完成签到,获得积分10
9秒前
shang发布了新的文献求助10
9秒前
00哦哦发布了新的文献求助30
9秒前
hecarli完成签到,获得积分10
9秒前
AnJaShua发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI2S应助hyz采纳,获得10
10秒前
xxxxxx完成签到,获得积分10
10秒前
白宇发布了新的文献求助30
10秒前
11秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220614
求助须知:如何正确求助?哪些是违规求助? 2869227
关于积分的说明 8165117
捐赠科研通 2536108
什么是DOI,文献DOI怎么找? 1368621
科研通“疑难数据库(出版商)”最低求助积分说明 645253
邀请新用户注册赠送积分活动 618786