Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers

肉眼 RGB颜色模型 检出限 人工智能 化学 每个符号的零件数 计算机科学 材料科学 机器学习 色谱法 有机化学
作者
Papaorn Siribunbandal,Yong‐Hoon Kim,Tanakorn Osotchan,Zhigang Zhu,Rawat Jaisutti
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (22): 18714-18721 被引量:11
标识
DOI:10.1021/acsomega.2c01419
摘要

Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seeyou完成签到 ,获得积分10
刚刚
顾矜应助加油少年采纳,获得10
1秒前
眼睛大花生完成签到,获得积分10
3秒前
3秒前
陈勇杰发布了新的文献求助10
5秒前
跳跃小伙完成签到 ,获得积分10
5秒前
5秒前
6秒前
酷波er应助危机的赛君采纳,获得10
6秒前
7秒前
加油通发布了新的文献求助10
7秒前
7秒前
Stella应助隐形的凡阳采纳,获得10
8秒前
9秒前
10秒前
10秒前
崔译文发布了新的文献求助10
11秒前
scuff发布了新的文献求助10
11秒前
LuckyM发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
zmz应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
木又应助科研通管家采纳,获得10
13秒前
元谷雪应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
niNe3YUE应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454