Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

特征提取 特征向量 人工智能 计算机科学 断层(地质) 模式识别(心理学) 图像处理 特征(语言学) 降维 维数之咒 计算机视觉 图像(数学) 语言学 地质学 哲学 地震学
作者
Chen Lu,Yang Wang,Minvydas Ragulskis,Yujie Cheng
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (10): e0164111-e0164111 被引量:84
标识
DOI:10.1371/journal.pone.0164111
摘要

Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CR7发布了新的文献求助10
1秒前
1秒前
无花果应助大头有大智慧采纳,获得10
2秒前
李爱国应助coolkid采纳,获得10
2秒前
浮游应助TS采纳,获得10
2秒前
tzy02发布了新的文献求助10
3秒前
3秒前
Phinny发布了新的文献求助10
3秒前
4秒前
ww完成签到,获得积分10
4秒前
4秒前
lll完成签到,获得积分10
4秒前
5秒前
5秒前
aaa5a123完成签到 ,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助100
6秒前
6秒前
7秒前
Lucas应助不是一个名字采纳,获得10
7秒前
凝安发布了新的文献求助30
7秒前
Xinzz完成签到 ,获得积分10
7秒前
8秒前
顺利静竹完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
9秒前
果果发布了新的文献求助20
9秒前
祁乐安发布了新的文献求助10
10秒前
chunhuizhang完成签到 ,获得积分10
10秒前
大个应助淋湿的雨采纳,获得10
11秒前
lili发布了新的文献求助10
11秒前
11秒前
毛头侠完成签到,获得积分10
11秒前
JJW发布了新的文献求助10
12秒前
猫车高手发布了新的文献求助10
12秒前
思源应助梁小鱼采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885855
求助须知:如何正确求助?哪些是违规求助? 4170775
关于积分的说明 12942531
捐赠科研通 3931395
什么是DOI,文献DOI怎么找? 2157039
邀请新用户注册赠送积分活动 1175458
关于科研通互助平台的介绍 1080012