Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

特征提取 特征向量 人工智能 计算机科学 断层(地质) 模式识别(心理学) 图像处理 特征(语言学) 降维 维数之咒 计算机视觉 图像(数学) 语言学 地质学 哲学 地震学
作者
Chen Lu,Yang Wang,Minvydas Ragulskis,Yujie Cheng
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (10): e0164111-e0164111 被引量:84
标识
DOI:10.1371/journal.pone.0164111
摘要

Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助落寞明雪采纳,获得30
刚刚
149865发布了新的文献求助10
刚刚
刚刚
1秒前
YanchenMeng完成签到,获得积分20
1秒前
hhhh完成签到,获得积分10
1秒前
lwg发布了新的文献求助10
1秒前
曹志伟发布了新的文献求助10
2秒前
领导范儿应助田田采纳,获得10
3秒前
3秒前
闵夏完成签到,获得积分10
4秒前
酷酷以蓝完成签到,获得积分10
5秒前
5秒前
小青椒应助ZhouYW采纳,获得30
5秒前
5秒前
6秒前
8秒前
8秒前
8秒前
大模型应助墨琼琼采纳,获得10
9秒前
落后鞋垫发布了新的文献求助10
9秒前
yaco发布了新的文献求助10
10秒前
10秒前
qiang发布了新的文献求助10
10秒前
沉舟完成签到,获得积分10
11秒前
null发布了新的文献求助10
11秒前
祖难破完成签到,获得积分10
12秒前
深情安青应助汤圆和蛋卷采纳,获得10
13秒前
墨酒子完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
什聆发布了新的文献求助10
14秒前
echo完成签到 ,获得积分10
14秒前
14秒前
15秒前
尤有发布了新的文献求助10
15秒前
后山种仙草完成签到,获得积分10
15秒前
tang发布了新的文献求助10
16秒前
洋洋发布了新的文献求助10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639