Identifying fast-onset antidepressants using rodent models

抗抑郁药 抑郁症动物模型 心理学 社会失败 无血性 医学 行为绝望测验 神经科学 药理学 精神科 精神分裂症(面向对象编程) 海马体
作者
Marcia J. Ramaker,Stephanie C. Dulawa
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:22 (5): 656-665 被引量:151
标识
DOI:10.1038/mp.2017.36
摘要

Depression is a leading cause of disability worldwide and a major contributor to the burden of suicide. A major limitation of classical antidepressants is that 2–4 weeks of continuous treatment is required to elicit therapeutic effects, prolonging the period of depression, disability and suicide risk. Therefore, the development of fast-onset antidepressants is crucial. Preclinical identification of fast-onset antidepressants requires animal models that can accurately predict the delay to therapeutic onset. Although several well-validated assay models exist that predict antidepressant potential, few thoroughly tested animal models exist that can detect therapeutic onset. In this review, we discuss and assess the validity of seven rodent models currently used to assess antidepressant onset: olfactory bulbectomy, chronic mild stress, chronic forced swim test, novelty-induced hypophagia (NIH), novelty-suppressed feeding (NSF), social defeat stress, and learned helplessness. We review the effects of classical antidepressants in these models, as well as six treatments that possess fast-onset antidepressant effects in the clinic: electroconvulsive shock therapy, sleep deprivation, ketamine, scopolamine, GLYX-13 and pindolol used in conjunction with classical antidepressants. We also discuss the effects of several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in one or more of these antidepressant onset sensitive models. These compounds include selective serotonin (5-HT)2C receptor antagonists, a 5-HT4 receptor agonist, a 5-HT7 receptor antagonist, NMDA receptor antagonists, a TREK-1 receptor antagonist, mGluR antagonists and (2R,6R)-HNK. Finally, we provide recommendations for identifying fast-onset antidepressants using rodent behavioral models and molecular approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Z1T2完成签到,获得积分10
3秒前
4秒前
领导范儿应助afterall采纳,获得10
4秒前
4秒前
难过觅山关注了科研通微信公众号
4秒前
5秒前
6秒前
Hello应助steiner采纳,获得10
6秒前
深情安青应助yukii采纳,获得10
6秒前
6秒前
lulu发布了新的文献求助10
6秒前
CipherSage应助谦让的含海采纳,获得10
7秒前
jiandan发布了新的文献求助10
8秒前
9秒前
9秒前
Accepted应助巴纳拉采纳,获得10
9秒前
玥来玥好发布了新的文献求助10
10秒前
10秒前
10秒前
情怀应助沉默的无施采纳,获得20
10秒前
可爱的函函应助。.。采纳,获得10
11秒前
赘婿应助常艳艳采纳,获得10
11秒前
12秒前
to高坚果发布了新的文献求助10
12秒前
先吃饭吧发布了新的文献求助20
12秒前
LLLLLLLL完成签到,获得积分10
12秒前
12秒前
Owen应助搞科研的小腻腻采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
hy发布了新的文献求助10
15秒前
干嘛鸭完成签到 ,获得积分10
15秒前
Hello应助廖同学采纳,获得10
15秒前
辉HUI发布了新的文献求助10
15秒前
CipherSage应助jiandan采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102053
求助须知:如何正确求助?哪些是违规求助? 2753346
关于积分的说明 7623434
捐赠科研通 2406027
什么是DOI,文献DOI怎么找? 1276521
科研通“疑难数据库(出版商)”最低求助积分说明 616877
版权声明 599103